893 resultados para Viral oncolysis
Resumo:
We have investigated the possible role of trans-acting factors interacting with the untranslated regions (UTRs) of coxsackievirus B3 (CVB3) RNA. We show here that polypyrimidine tract-binding protein (PTB) binds specifically to both 5' and 3' UTRs, but with different affinity. We have demonstrated that PTB is a bona fide internal ribosome entry site (IRES) trans-acting factor (ITAF) for CVB3 RNA by characterizing the effect of partial silencing of FIB ex vivo in He La cells. Furthermore, IRES activity in BSC-1 cells, which are reported to have a very low level of endogenous FIB, was found to be significantly lower than that in He La cells. Additionally, we have mapped the putative contact points of PTB on the 5' and 3' UTRs by an RNA toe-printing assay. We have shown that the 3' UTR is able to stimulate CVB3 IRES-mediated translation. Interestingly, a deletion of 15 nt at the 5' end or 14 rut at the 3' end of the CVB3 3' UTR reduced the 3' UTR-mediated enhancement of IRES activity ex vivo significantly, and a reduced interaction was shown with PTB. It appears that the FIB protein might help in circularization of the CVB3 RNA by bridging the ends necessary for efficient translation of the viral RNA.
Resumo:
"The genetic diversity of Puumala hantavirus (PUUV) was studied in a local population of its natural host, the bank vole (Myodes glareolus). The trapping area (2.5x2.5 km) at Konnevesi, Central Finland, included 14 trapping sites, at least 500 m apart; altogether, 147 voles were captured during May and October 2005. Partial sequences of the S, M and L viral genome segments were recovered from 40 animals. Seven, 12 and 17 variants were detected for the S, M and L sequences, respectively; these represent new wild-type PUUV strains that belong to the Finnish genetic lineage. The genetic diversity of PUUV strains from Konnevesi was 0.2-4.9% for the S segment, 0.2-4.8% for the M segment and 0.2-9.7% for the L segment. Most nucleotide substitutions were synonymous and most deduced amino acid substitutions were conservative, probably due to strong stabilizing selection operating at the protein level. Based on both sequence markers and phylogenetic clustering, the S, M and L sequences could be assigned to two groups, 'A' and 'B'. Notably, not all bank voles carried S, M and L sequences belonging to the same group, i.e. SAMALA or SBMBLB.. A substantial proportion (8/40, 20%) of the newly characterized PUUV strains possessed reassortant genomes such as SBMALA, SAMBLB or SBMALB. These results suggest that at least some of the PUUV reassortants are viable and can survive in the presence of their parental strains."
Resumo:
The pathogenic members of the picornavirus superfamily have adverse effects on humans, their crops and their livestock. As structure is related to function, detailed structural studies on these viruses are important not only for fundamental understanding of the viral life cycle, but also for the rational design of vaccines and inhibitors for disease control. These viruses have positive sense, single-stranded RNA genomes enclosed in a protein capsid. X-ray crystallography and cryo-electron microscopy studies have revealed that the isometric members of this group have icosahedrally-symmetric capsids made up of 60 copies of each of the structural proteins. The members that infect animal cells often employ one or more cellular receptors to facilitate cell entry which in some cases is known to initiate the uncoating sequence of the genome. The nature of the interactions between individual viruses and alternative cellular receptors has rarely been probed. The capsid assembly of the members of the picornavirus superfamily is considered to be cooperative and the interactions of RNA and capsid proteins are thought to play an important role in orchestrating virus assembly. The major aims of this thesis were to solve the structures of blackcurrant reversion virus (BRV), human parechovirus 1 (HPEV1) and coxsackievirus A7 (CAV7), as well as the structure of HPEV1 complexed with two of its cellular receptors using cryo-electron microscopy, three-dimensional image reconstruction and homology modeling. Each of the selected viruses represents a taxonomic group where little or no structural data was previously available. The results enabled the detailed comparison of the new structures to those of known picornaviruses, the identification of surface-exposed epitopes potentially important for host interaction, the mapping of RNA-capsid protein interactions and the elucidation of the basis for the specificity of two different receptor molecules for the same capsid. This work will form the basis for further studies on the influence of RNA on parechovirus assembly as a potential target for drug design.
Resumo:
Alphaviruses are positive strand RNA viruses that replicate in association with cellular membranes. The viral RNA replication complex consists of four non-structural proteins nsP1-nsP4 which are essential for viral replication. The functions of nsP1, nsP2 and nsP4 are well established, but the roles of nsP3 are mainly unknown. In this work I have clarified some of the functions of nsP3 in order to better understand the importance of this protein in virus replication. Semliki Forest virus (SFV) has been mostly used as a model alphavirus during this work, but some experiments have also been conducted with Sindbis and Chikungunya viruses. NsP3 is composed of three different protein domains. The N-terminus of nsP3 contains an evolutionarily conserved macrodomain, the central part of nsP3 contains a domain that is only found in alphaviruses, and the C-terminus of the protein is hypervariable and predicted to be unstructured. In this work I have analyzed the functions of nsP3 macrodomain, and shown that viral macrodomains bind poly(ADP-ribose) and that they do not resemble cellular macrodomains in their properties. Furthermore, I have shown that some macrodomains, including viral macrodomains of SFV and hepatitis E virus, also bind poly(A). Mutations in the ligand binding pocket of SFV macrodomain hamper virus replication but do not confer lethality, indicating that macrodomain function is beneficial but not mandatory for virus replication. The hypervariable C-terminus of nsP3 is heavily phosphorylated and is enriched in proline residues. In this work it is shown that this region harbors an SH3 domain binding motif (Sh3BM) PxRxPR through which cellular amphiphysin is recruited to viral replication sites and to nsP3 containing cytoplasmic aggregate structures. The function of Sh3BM was destroyed by a single point mutation, which led to impaired viral RNA replication in HeLa cells, pointing out the functional importance of amphiphysin recruitment by the Sh3BM. In addition, evidence is provided tho show that the endosomal localization of alphavirus replication is mediated by nsP3 and that the phosphorylation of hypervariable region might be important for the endosomal targeting. Together these findings demonstrate that nsP3 contains multiple important host interaction motifs and domains, which facilitate successful viral propagation in host cells.
Resumo:
X-ray diffraction studies on single crystals of a few viruses have led to the elucidation of their three dimensional structure at near atomic resolution. Both the tertiary structure of the coat protein subunit and the quaternary organization of the icosahedral capsid in these viruses are remarkably similar. These studies have led to a critical re-examination of the structural principles in the architecture of isometric viruses and suggestions of alternative mechanisms of assembly. Apart from their role in the assembly of the virus particle, the coat proteins of certian viruses have been shown to inhibit the replication of the cognate RNA leading to cross-protection. The coat protein amino acid sequence and the genomic sequence of several spherical plant RNA viruses have been determined in the last decade. Experimental data on the mechanisms of uncoating, gene expression and replication of several classes of viruses have also become available. The function of the non-structural proteins of some viruses have been determined. This rapid progress has provided a wealth of information on several key steps in the life cycle of RNA viruses. The function of the viral coat protein, capsid architecture, assembly and disassembly and replication of isometric RNA plant viruses are discussed in the light of this accumulated knowledge.
Resumo:
In an epidemiological study of symptomatic human rotaviruses in Mysore, India during 1993 and 1994, isolates MP409 and MP480 were isolated from two children suffering from severe, acute dehydrating diarrhea. Both isolates exhibited 'long' RNA pattern and subgroup I specificity suggesting the likelihood of their animal origin. Both isolates did not react with monoclonal antibodies (MAbs) specific for serotypes G1 to G6 as well as CIO. To determine the genetic origin of these isolates, complete nucleotide sequences of genes encoding the outer capsid proteins VP4 and VP7, nonstructural proteins NSP1 and NSP3 and viral enterotoxin protein NSP4 from MP409 and partial sequences of genes from MP480 were determined. Comparison of the 5' and 3' terminal sequences of 250 nucleotides revealed complete identity of the gene sequences in both strains suggesting that MP409 and MP480 are two different isolates of a single strain. Comparison of the nucleotide and deduced amino acid sequences of VP4, VP7, NSP1 and NSP3 of MP409 with published sequences of strains belonging to different serotypes revealed that both outer capsid proteins VP4 and VP7 and NSP1 are highly related to the respective proteins from the P6[1], G8 type bovine rotavirus A5 isolated from a calf with diarrhoea in Thailand and that the NSP3 is highly homologous to that of bovine rotaviruses. The NSP 1 protein showed greatest sequence identity with NSP4s belonging to the KUN genetic group to which NSP4s from human G2 type strains and bovine rotaviruses belong. MP409 and MP480 likely signify interspecies transmission of P6[1], G8 type strains from cattle to humans and represent the first P6[1] type rotaviruses isolated in humans. These and our previous studies on the asymptomatic neonatal strain I321 are of evolutionary and epidemiological significance in the context of close association of majority of the Indian population with cattle.
Resumo:
The structures of two dehydropentapeptides, Boc-Pro-Delta Phe-Val-Delta Phe-Ala-OMe (I) and Boc-Pro-Delta Phe-Gly-Delta Phe-Ala-OMe (II) (Boc: t-butoxycarbonyl), have been determined by nuclear magnentic resonance (NMR), circular dichroism (CD), and X-ray, crystallographic studies. The peptide I assumes a S-shaped flat beta-bend structure, characterized by two partially overlapping type II beta-bends and absence of a second 1 <- 4 (N4-H center dot center dot center dot O1') intramolecular hydrogen bond. This is in contrast to the generally observed 3(10)-helical conformation in peptides with Delta Phe at alternate positions. This report describes the novel conformation assumed by peptide I and compares it with that of the conserved tip of the V3 loop of the HIV-1 envelope glycoprotein gp120 (sequence, G:P319 to F:P324, PDB code IACY). The tip of the V3 loop also assumes a S-shaped conformation with Arg:P322, making an intramolecular side-chain-backbone interaction with the carbonyl oxygen of Gly:P319. Interestingly, in peptide I, C(gamma)HVal(3) makes a similar side-chain-backbone C-H center dot center dot center dot O hydrogen bond with the carbonyl oxygen of the Boc group. The observed overall similarity indicates the possible use of the peptide as a viral antagonist or synthetic antigen. Peptide 11 adopts a unique turn followed by a 3(10)-helix. Both peptides I and II are classical examples of stabilization of unusual structures in oligopeptides.
Resumo:
Merkel cell carcinoma (MCC) is a rare cutaneous malignancy that occurs predominantly on sun exposed skin areas. A new polyomavirus (MCPyV) was identified in MCC tumor tissues in 2008 suggesting that a viral infection might be an etiological factor. A typical MCC is a rapidly growing painless purple nodule. In its early stage it can be misjudged by its appearance as a cyst or abscess. Recurrences are common and approximately half of the patients will develop lymph node metastases and third of the patents will have distant metastases. It affects mostly elderly persons at an average age of 70 at the time of diagnosis. MCC was first described in 1972 and the first MCC patient in Finland was identified in 1983. MCC has been poorly recognized, but increased awareness and better diagnostic accuracy has increased the incidence since the early years. In this study, all cases with a notation of MCC during 1979 2008 were obtained from the Finnish Cancer Registry. Based on this data, the incidence is 0.11 for men and 0.12 for women. It is similar than that of other Nordic countries, but lower than in the USA. For clinical series, the files of patients diagnosed with MCC during 1983 2004 were reviewed, and the tissue samples were re-evaluated, if available (n=181). Third of the patients were men, and the most common site of the primary tumor was the head and neck (53%). The majority of the patients (86%) presented with a clinically node-negative (Stage I or II) disease, but the disease recurred in 38% of them. The treatment schemes were heterogeneous. No additional benefit from a wide margin (≥2 cm) was found compared to a margin of 0.1-1.9 cm, but intralesional excision was more often associated with local recurrence. None of the patients with Stage I-II disease who had received postoperative radiotherapy had local recurrence during the follow-up period. The 5-year relative survival ratio for Stage I disease was 68%, for Stage II 67%, for Stage III 16%, and for Stage IV 0%. The relative excess risk of death was significantly lower among women than among men. Some of these tissue samples were further analyzed for vascular invasion (n=126) by immunohistochemistry using vascular endothelial markers CD-31 and D2-40. Vascular invasion was seen in 93% of the samples and it was observed already in very small, <5mm tumors. The tissue samples were also analyzed for the presence of MCPyV by using a polymerase chain reaction (PCR) and quantitative PCR. MCPyV DNA was present in 80% of 114 samples studied. The patients with virus-positive tumors had better overall survival than patients with virus-negative tumors. Immunohistochemical analyses were performed for the expression of VEGFR-2 (n=21) and endostatin (n=19), but they had no prognostic value. Our results support the concept of treating MCC with margin-negative excision and radiotherapy to the tumor bed to reduce local recurrence. The finding of a high frequency of lymphovascular invasion reduces its value as a prognostic factor, but emphasizes the role of sentinel node biopsy even in very small primary MCC.
Resumo:
Innate immunity and host defence are rapidly evoked by structurally invariant molecular motifs common to microbial world, called pathogen associated molecular patterns (PAMPs). In addition to PAMPs, endogenous molecules released in response to inflammation and tissue damage, danger associated molecular patterns (DAMPs), are required for eliciting the response. The most important PAMPs of viruses are viral nucleic acids, their genome or its replication intermediates, whereas the identity and characteristics of virus infection-induced DAMPs are poorly defined. PAMPs and DAMPs engage a limited set of germ-line encoded pattern recognition receptors (PRRs) in immune and non-immune cells. Membrane-bound Toll-like receptors (TLRs), cytoplasmic retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs) and nucleotide-binding oligomerization domain-like receptor (NLRs) are important PRRs involved in the recognition of the molecular signatures of viral infection, such as double-stranded ribonucleic acids (dsRNAs). Engagement of PRRs results in local and systemic innate immune responses which, when activated against viruses, evoke secretion of antiviral and pro-inflammatory cytokines, and programmed cell death i.e., apoptosis of the virus-infected cell. Macrophages are the central effector cells of innate immunity. They produce significant amounts of antiviral cytokines, called interferons (IFNs), and pro-inflammatory cytokines, such as interleukin (IL)-1β and IL-18. IL-1β and IL-18 are synthesized as inactive precursors, pro-IL-1β and pro-IL-18, that are processed by caspase-1 in a cytoplasmic multiprotein complex, called the inflammasome. After processing, these cytokines are biologically active and will be secreted. The signals and secretory routes that activate inflammasomes and the secretion of IL-1β and IL-18 during virus infections are poorly characterized. The main goal of this thesis was to characterize influenza A virus-induced innate immune responses and host-virus interactions in human primary macrophages during an infection. Methodologically, various techniques of cellular and molecular biology, as well as proteomic tools combined with bioinformatics, were utilized. Overall, the thesis provides interesting insights into inflammatory and antiviral innate immune responses, and has characterized host-virus interactions during influenza A virus-infection in human primary macrophages.
Resumo:
The copper complex of the antituberculous drug, isonicotinic acid hydrazide (INH), inhibits the RNA-dependent DNA polymerase of Rous sarcoma virus and inactivates its ability to malignantly transform chick embryo cells. The INH-copper complex binds to the 70S genome RNA of Rous sarcoma virus (RSV), which may account for its ability to inhibit the RNA-dependent DNA polymerase. The complex binds RNA more effectively than DNA in contrast to M-IBT-copper complexes, which bind both types of nucleic acids equally. The homopolymers, poly rA and poly rU, are bound by the INH-copper complex to a greater extent than poly rC. Isonicotinic acid hydrazide alone and CuSO4 alone bind neither DNA, RNA, poly (rA), poly (rU), nor poly (rC). However, CuSO4 alone binds poly (rI); INH alone does not. In addition to viral DNA synthesis, chick-embryo cell DNA synthesis is inhibited by the INH-copper complex. The extent of inhibition of cellular DNA synthesis is greater than that of cellular RNA and protein synthesis. No selective inhibition of transformation in cells previously infected with Rous sarcoma virus is observed.
Resumo:
Background: Dengue virus along with the other members of the flaviviridae family has reemerged as deadly human pathogens. Understanding the mechanistic details of these infections can be highly rewarding in developing effective antivirals. During maturation of the virus inside the host cell, the coat proteins E and M undergo conformational changes, altering the morphology of the viral coat. However, due to low resolution nature of the available 3-D structures of viral assemblies, the atomic details of these changes are still elusive. Results: In the present analysis, starting from C alpha positions of low resolution cryo electron microscopic structures the residue level details of protein-protein interaction interfaces of dengue virus coat proteins have been predicted. By comparing the preexisting structures of virus in different phases of life cycle, the changes taking place in these predicted protein-protein interaction interfaces were followed as a function of maturation process of the virus. Besides changing the current notion about the presence of only homodimers in the mature viral coat, the present analysis indicated presence of a proline-rich motif at the protein-protein interaction interface of the coat protein. Investigating the conservation status of these seemingly functionally crucial residues across other members of flaviviridae family enabled dissecting common mechanisms used for infections by these viruses. Conclusions: Thus, using computational approach the present analysis has provided better insights into the preexisting low resolution structures of virus assemblies, the findings of which can be made use of in designing effective antivirals against these deadly human pathogens.
Resumo:
Tiivistelmä ReferatAbstract Metabolomics is a rapidly growing research field that studies the response of biological systems to environmental factors, disease states and genetic modifications. It aims at measuring the complete set of endogenous metabolites, i.e. the metabolome, in a biological sample such as plasma or cells. Because metabolites are the intermediates and end products of biochemical reactions, metabolite compositions and metabolite levels in biological samples can provide a wealth of information on on-going processes in a living system. Due to the complexity of the metabolome, metabolomic analysis poses a challenge to analytical chemistry. Adequate sample preparation is critical to accurate and reproducible analysis, and the analytical techniques must have high resolution and sensitivity to allow detection of as many metabolites as possible. Furthermore, as the information contained in the metabolome is immense, the data set collected from metabolomic studies is very large. In order to extract the relevant information from such large data sets, efficient data processing and multivariate data analysis methods are needed. In the research presented in this thesis, metabolomics was used to study mechanisms of polymeric gene delivery to retinal pigment epithelial (RPE) cells. The aim of the study was to detect differences in metabolomic fingerprints between transfected cells and non-transfected controls, and thereafter to identify metabolites responsible for the discrimination. The plasmid pCMV-β was introduced into RPE cells using the vector polyethyleneimine (PEI). The samples were analyzed using high performance liquid chromatography (HPLC) and ultra performance liquid chromatography (UPLC) coupled to a triple quadrupole (QqQ) mass spectrometer (MS). The software MZmine was used for raw data processing and principal component analysis (PCA) was used in statistical data analysis. The results revealed differences in metabolomic fingerprints between transfected cells and non-transfected controls. However, reliable fingerprinting data could not be obtained because of low analysis repeatability. Therefore, no attempts were made to identify metabolites responsible for discrimination between sample groups. Repeatability and accuracy of analyses can be influenced by protocol optimization. However, in this study, optimization of analytical methods was hindered by the very small number of samples available for analysis. In conclusion, this study demonstrates that obtaining reliable fingerprinting data is technically demanding, and the protocols need to be thoroughly optimized in order to approach the goals of gaining information on mechanisms of gene delivery.
Resumo:
Afrikkalainen sikarutto on lakisääteisesti vastustettava helposti leviävä sikojen ja villisikojen virustauti, jolla on myös vakavia sosioekonomisia vaikutuksia. Akuutissa tautimuodossa eläimillä esiintyy syömättömyyttä, korkeaa kuumetta, verenpurkaumia iholla, veristä ulostetta sekä mahdollisesti ripulia. Kuolleisuus on lähes 100 % ja tauti johtaa kuolemaan 7-10 vrk tartunnan jälkeen. Tauti ei tartu ihmisiin. Tautia esiintyy sekä kesy- että villisioissa suurimmassa osassa Saharan eteläpuolista Afrikkaa ja Sardiniassa. Vuodesta 2007 lähtien tautia on esiintynyt Kaukasuksen alueella ja vuonna 2011 lähellä Suomen rajaa: Leningradin alueella ja Kuolan niemimaalla. Tässä riskiprofiilissa kartoitetaan reitit ja tapahtumasarjat, jotka voivat johtaa siihen, että afrikkalainen sikarutto tulee Suomeen ensimmäisen kerran. Näistä oleellisimmat ovat: maahantulo infektioalueella matkustaneiden ihmisten mukana, infektoituneen lihan tai lihatuotteen mukana, elävien kesysikojen ja sperman mukana, kontaminoituneiden eläinkuljetusajoneuvojen mukana, kansainvälisen liikenteen ruokajätteen mukana ja Suomeen vaeltavan infektoituneen villisian mukana. Tilatason tautisuojaus sekä tehokas ja kohdennettu tiedottaminen taudin vaaroista ovat avainasemassa, kun halutaan suojata Suomen sikaelinkeinoa afrikkalaiselta sikarutolta.
Resumo:
In vitro translation of belladonna mottle virus BDMV(I) genomic RNA in a rabbit reticulocyte lysate system produced proteins of Mr 210,000, 150,000 and 78,000 which form the non-structural proteins. The coat protein, on the other hand, was expressed from a subgenomic RNA which was found to be encapsidated in the empty capsids forming the top component viral particles. The implications of subgenomic RNA encapsidation in viral replication and assembly are discussed.
Resumo:
Human papillomaviruses (HPVs) are the causal agents of cervical cancer, which is the second most common cancer among women worldwide. Cellular transformation and carcinogenesis depend on the activities of viral E5, E6 and E7 proteins. Alterations in cell-cell contacts and in communication between epithelial cells take place during cervical carcinogenesis, leading to changes in cell morphology, increased cell motility and finally invasion. The aim of this thesis was to study genome-wide effects of the HPV type 16 (HPV-16) E5 protein on the expression of host cell messenger RNAs (mRNAs) and microRNAs by applying microarray technology. The results showed that the HPV-16 E5 protein alters several cellular pathways involved in cellular adhesion, motility and proliferation as well as in the extracellular matrix. The E5 protein was observed to enhance wound healing of epithelial cell monolayers by increasing cell motility in vivo. HPV-16 E5-induced alterations in the expression of cellular microRNAs and their target genes seem to favour increased proliferation and tumorigenesis. E5 was also shown to affect the expression of adherens junction proteins in HaCaT epithelial keratinocytes. In addition, a study of a membrane cytoskeletal cross-linker protein, ezrin, revealed that when activated, it localizes to adherens junctions. The results suggest that ezrin distribution to forming adherens junctions is due to Rac1 activity in epithelial cells. These studies reveal for the first time the holistic effects of HPV-16 E5 protein in promoting precancerous events in epithelial cells. The results contribute to identifyinging novel markers for cervical precancerous stages and to predicting disease behaviour.