986 resultados para Vascular wall
Resumo:
Kallistatin, a serpin widely produced throughout the body, has vasodilatory, anti-angiogenic, anti-oxidant, and anti-inflammatory effects. Effects of diabetes and its vascular complications on serum kallistatin levels are unknown.
Resumo:
Insulin-like growth factor binding protein (IGFBP)-3 modulates vascular development by regulating endothelial progenitor cell (EPC) behavior, specifically stimulating EPC cell migration. This study was undertaken to investigate the mechanism of IGFBP-3 effects on EPC function and how IGFBP-3 mediates cytoprotection following vascular injury.
Resumo:
To determine the relationships between C-reactive protein (CRP) levels and features of Type 1 diabetes.
Resumo:
To determine in Type 1 diabetes patients if levels of pigment epithelium-derived factor (PEDF), an anti-angiogenic, anti-inflammatory and antioxidant factor, are increased in individuals with complications and positively related to vascular and renal dysfunction, body mass index, glycated haemoglobin, lipids, inflammation and oxidative stress.
Resumo:
The association between poor metabolic control and the microvascular complications of diabetes is now well established, but the relationship between long-term metabolic control and the accelerated atherosclerosis of diabetes is as yet poorly defined. Hyperglycemia is the standard benchmark by which metabolic control is assessed. One mechanism by which elevated glucose levels may mediate vascular injury is through early and advanced glycation reactions affecting a wide variety of target molecules. The "glycation hypothesis'' has developed over the past 30 years, evolving gradually into a "carbonyl stress hypothesis'' and taking into account not only the modification of proteins by glucose, but also the roles of oxidative stress, a wide range of reactive carbonyl-containing intermediates (derived not only from glucose but also from lipids), and a variety of extra- and intracellular target molecules. The final products of these reactions may now be termed "Either Advanced Glycation or Lipoxidation End-Products'' or "EAGLEs.'' The ubiquity of carbonyl stress within the body, the complexity of the reactions involved, the variety of potential carbonyl intermediates and target molecules and their differing half-lives, and the slow development of the complications of diabetes all pose major challenges in dissecting the significance of these processes. The extent of the reactions tends to correlate with overall metabolic control, creating pitfalls in the interpretation of associative data. Many animal and cell culture studies, while supporting the hypothesis, must be viewed with caution in terms of relevance to human diabetes. In this article, the development of the carbonyl stress hypothesis is reviewed, and implications for present and future treatments to prevent complications are discussed.
Resumo:
A high concentration of circulating low-density lipoproteins (LDL) is a major risk factor for atherosclerosis. Native LDL and LDL modified by glycation and/or oxidation are increased in diabetic individuals. LDL directly stimulate vascular smooth muscle cell (VSMC) proliferation; however, the mechanisms remain undefined. The extracellular signal-regulated kinase (ERK) pathway mediates changes in cell function and growth. Therefore, we examined the cellular effects of native and modified LDL on ERK phosphorylation in VSMC. Addition of native, mildly modified (oxidized, glycated, glycoxidized) and highly modified (highly oxidized, highly glycoxidized) LDL at 25 microg/ml to rat VSMC for 5 min induced a fivefold increase in ERK phosphorylation. To elucidate the signal transduction pathway by which LDL phosphorylate ERK, we examined the roles of the Ca(2+)/calmodulin pathway, protein kinase C (PKC), src kinase, and mitogen-activated protein kinase kinase (MEK). Treatment of VSMC with the intracellular Ca(2+) chelator EGTA-AM (50 micromol/l) significantly increased ERK phosphorylation induced by native and mildly modified LDL, whereas chelation of extracellular Ca(2+) by EGTA (3 mmol/l) significantly reduced LDL-induced ERK phosphorylation. The calmodulin inhibitor N-(6-aminohexyl)-1-naphthalenesulfonamide (40 micromol/l) significantly decreased ERK phosphorylation induced by all types of LDL. Downregulation of PKC with phorbol myristate acetate (5 micromol/l) markedly reduced LDL-induced ERK phosphorylation. Pretreatment of VSMC with a cell-permeable MEK inhibitor (PD-98059, 40 micromol/l) significantly decreased ERK phosphorylation in response to native and modified LDL. These findings indicate that native and mildly and highly modified LDL utilize similar signaling pathways to phosphorylate ERK and implicate a role for Ca(2+)/calmodulin, PKC, and MEK. These results suggest a potential link between modified LDL, vascular function, and the development of atherosclerosis in diabetes.
Resumo:
In people with diabetes, glycation of apolipoproteins correlates with other indices of recent glycemic control, including HbA1. For several reasons, increased glycation of apolipoproteins may play a role in the accelerated development of atherosclerosis in diabetic patients. Recognition of glycated LDL by the classical LDL receptor is impaired, whereas its uptake by human monocyte-macrophages is enhanced. These alterations may contribute to hyperlipidemia and accelerated foam-cell formation, respectively. Glycation of LDL also enhances its capacity to stimulate platelet aggregation. The uptake of VLDL from diabetic patients by human monocyte-macrophages is enhanced. This enhancement may be due, at least in part, to increased glycation of its lipoproteins. Glycation of HDL impairs its recognition by cells and reduces its effectiveness in reverse cholesterol transport. Glycation of apolipoproteins may also generate free radicals, increasing oxidative damage to the apolipoproteins themselves, the lipids in the particle core, and any neighboring macromolecules. This effect may be most significant in extravasated lipoproteins. In these, increased glycation promotes covalent binding to vascular structural proteins, and oxidative reactions may cause direct damage to the vessel wall. Glycoxidation, or browning, of sequestered lipoproteins may further enhance their atherogenicity. Finally, glycated or glycoxidized lipoproteins may be immunogenic, and lipoprotein-immune complexes are potent stimulators of foam-cell formation.
Resumo:
Sirolimus-eluting stent therapy has achieved considerable success in overcoming coronary artery restenosis. However, there remain a large number of patients presenting with restenosis after the treatment, and the source of its persistence remains unclarified. Although recent evidence supports the contribution of vascular stem/progenitor cells in restenosis formation, their functional and molecular responses to sirolimus are largely unknown.
Resumo:
Drawing on a perspective which takes into account the convergences of sovereign and biopolitical ruling apparatuses, the aim of this article is to provide a comprehensive view of the Separation Wall constructed by Israel in East Jerusalem, and, through it, of Israeli control of Palestinian East Jerusalem. Neither a comprehensive border, nor a mere barrier, the Separation Wall which is being constructed in Jerusalem operates to reinstates sovereign power in arrays of governmentality for the purpose of drawing on the ability of sovereignty to appropriate legitimacy for the territorialisation of governmentality. This article claims that these territorialised arrays of governmentality give rise to processes of racialisation, by maintaining a grip on the communities of Palestinians in East Jerusalem and sustaining them in an intermediate position, standing in the way of their full integration into the Israeli population while severing their existing connections with the Palestinians in the West Bank. © Taylor & Francis Group, LLC.
Resumo:
PURPOSE: To assess the effects of advanced glycation endproduct (AGE) modification of vascular basement membrane (BM) on endothelin-1 (Et-1) induced intracellular [Ca2+] ([Ca2+]i) homeostasis and contraction in retinal microvascular pericytes (RMP). METHODS: RMPs were isolated from bovine retinal capillaries and propagated on AGE modified BM extract (AGE-BM) or non-modified native BM. Cytosolic Ca2+ was estimated using fura-2 microfluorimetry and cellular contraction determined by measurement of planimetric cell surface area. ETA receptor mRNA and protein expression was assessed by real time RT-PCR and western blotting, respectively. RESULTS: Exogenous endothelin-1 (Et-1) evoked rises in [Ca2+]i and contraction in RMPs were found to be mediated entirely through ETA receptor (ETAR) activation. Both peak and plateau phases of the Et-1 induced [Ca2+]i response and contraction were impaired in RMPs propagated on AGE modified BM. ETAR mRNA expression remained unchanged in RMPs exposed to native or AGE-BM, but protein expression for ETAR (66 kDa) was lower in the AGE exposed cells. CONCLUSIONS: These results suggest that substrate derived AGE crosslinks can influence RMP physiology by mechanisms which include disruption of ETA receptor signalling. AGE modification of vascular BMs may contribute to the retinal hemodynamic abnormalities observed during diabetes.
Resumo:
The major components of blood vessels are the vascular endothelium and its supporting smooth muscle. Significant strides have been made in the understanding of the cellular and molecular biology of these two cell types and in particular their interactions have been the subject of much interest and debate over the past two decades. The vascular endothelium is now known to profoundly influence the synthetic and motor functions of the underlying smooth muscle and participate in the pathogenesis of all the major vascular disorders. Similarly, the vascular smooth muscle has important effects on the overlying endothelium, and any disruption in the cellular physiology of either cell type can result in dysfunction with important effects on blood flow and vascular permeability The majority of this accumulated knowledge relates to the vascular cells of the macrocirculation. Pericytes are the supporting cells of the microvasculature and a body of evidence is now available to show that similar regulatory mechanisms and vessel-wall cross-talk exists between these cells and the microvascular endothelium. Nowhere are these interactions more important than in the retinal microcirculation where autoregulation is vital for the maintenance of smooth and uninterrrupted blood flow. This review focuses on the interactions between retinal microvascular endothelial cells and their associated pericytes and examines the role of the endothelial cell and the pericyte in the pathogenesis of disease.
Resumo:
This study was undertaken to further characterise the fine structural changes occurring in the retinal circulation in early diabetes. The eyes of eight alloxan/streptozotocin and three spontaneously diabetic dogs were examined by trypsin digest and electron microscopy after durations of diabetes of between 1 and 7 years. Basement membrane (BM) thickening in the retinal capillaries was the only obvious fine structural change identified during the first 3 years of diabetes and was established within 1 year of induction. Widespread pericyte loss was noted after 4 years of diabetes and was paralleled by loss of smooth muscle (SM) cells, in the retinal arterioles. SM cell loss was most obvious in the smaller arterioles of the central retina. No microaneurysms were noted in the experimental diabetic dogs with up to 5 years' duration of diabetes but were widespread in a spontaneously diabetic animal at 7 years. This study has shown that SM cell loss, a hitherto unrecognised feature of diabetic microangiopathy, accompanies pericyte loss in the retinal circulation of diabetic dogs.