871 resultados para Technology Readiness Level


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis reports on the investigations, simulations and analyses of novel power electronics topologies and control strategies. The research is financed by an Australian Research Council (ARC) Linkage (07-09) grant. Therefore, in addition to developing original research and contributing to the available knowledge of power electronics, it also contributes to the design of a DC-DC converter for specific application to the auxiliary power supply in electric trains. Specifically, in this regard, it contributes to the design of a 7.5 kW DC-DC converter for the industrial partner (Schaffler and Associates Ltd) who supported this project. As the thesis is formatted as a ‘thesis by publication’, the contents are organized around published papers. The research has resulted in eleven papers, including seven peer reviewed and published conference papers, one published journal paper, two journal papers accepted for publication and one submitted journal paper (provisionally accepted subject to few changes). In this research, several novel DC-DC converter topologies are introduced, analysed, and tested. The similarity of all of the topologies devised lies in their ‘current circulating’ switching state, which allows them to store some energy in the inductor, as extra inductor current. The stored energy may be applied to enhance the performance of the converter in the occurrence of load current or input voltage disturbances. In addition, when there is an alternating load current, the ability to store energy allows the converter to perform satisfactorily despite frequently and highly varying load current. In this research, the capability of current storage has been utilised to design topologies for specific applications, and the enhancement of the performance of the considered applications has been illustrated. The simplest DC-DC converter topology, which has a ‘current circulating’ switching state, is the Positive Buck-Boost (PBB) converter (also known as the non-inverting Buck-Boost converter). Usually, the topology of the PBB converter is operating as a Buck or a Boost converter in applications with widely varying input voltage or output reference voltage. For example, in electric railways (the application of our industrial partner), the overhead line voltage alternates from 1000VDC to 500VDC and the required regulated voltage is 600VDC. In the course of this research, our industrial partner (Schaffler and Associates Ltd) industrialized a PBB converter–the ‘Mudo converter’–operating at 7.5 kW. Programming the onboard DSP and testing the PBB converter in experimental and nominal power and voltage was part of this research program. In the earlier stages of this research, the advantages and drawbacks of utilization of the ‘current circulating’ switching state in the positive Buck-Boost converter were investigated. In brief, the advantages were found to be robustness against input voltage and current load disturbances, and the drawback was extra conduction and switching loss. Although the robustness against disturbances is desirable for many applications, the price of energy loss must be minimized to attract attention to the utilization of the PBB converter. In further stages of this research, two novel control strategies for different applications were devised to minimise the extra energy loss while the advantages of the positive Buck-Boost converter were fully utilized. The first strategy is Smart Load Controller (SLC) for applications with pre-knowledge or predictability of input voltage and/or load current disturbances. A convenient example of these applications is electric/hybrid cars where a master controller commands all changes in loads and voltage sources. Therefore, the master controller has a pre-knowledge of the load and input voltage disturbances so it can apply the SLC strategy to utilize robustness of the PBB converter. Another strategy aiming to minimise energy loss and maximise the robustness in the face of disturbance is developed to cover applications with unexpected disturbances. This strategy is named Dynamic Hysteresis Band (DHB), and is used to manipulate the hysteresis band height after occurrence of disturbance to reduce dynamics of the output voltage. When no disturbance has occurred, the PBB converter works with minimum inductor current and minimum energy loss. New topologies based on the PBB converter have been introduced to address input voltage disturbances for different onboard applications. The research shows that the performance of applications of symmetrical/asymmetrical multi-level diode-clamped inverters, DC-networks, and linear-assisted RF amplifiers may be enhanced by the utilization of topologies based on the PBB converter. Multi-level diode-clamped inverters have the problem of DC-link voltage balancing when the power factor of their load closes to unity. This research has shown that this problem may be solved with a suitable multi-output DC-DC converter supplying DClink capacitors. Furthermore, the multi-level diode-clamped inverters supplied with asymmetrical DC-link voltages may improve the quality of load voltage and reduce the level of Electromagnetic Interference (EMI). Mathematical analyses and experiments on supplying symmetrical and asymmetrical multi-level inverters by specifically designed multi-output DC-DC converters have been reported in two journal papers. Another application in which the system performance can be improved by utilization of the ‘current circulating’ switching state is linear-assisted RF amplifiers in communicational receivers. The concept of ‘linear-assisted’ is to divide the signal into two frequency domains: low frequency, which should be amplified by a switching circuit; and the high frequency domain, which should be amplified by a linear amplifier. The objective is to minimize the overall power loss. This research suggests using the current storage capacity of a PBB based converter to increase its bandwidth, and to increase the domain of the switching converter. The PBB converter addresses the industrial demand for a DC-DC converter for the application of auxiliary power supply of a typical electric train. However, after testing the industrial prototype of the PBB converter, there were some voltage and current spikes because of switching. To attenuate this problem without significantly increasing the switching loss, the idea of Active Gate Signalling (AGS) is presented. AGS suggests a smart gate driver that selectively controls the switching process to reduce voltage/current spikes, without unacceptable reduction in the efficiency of switching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The critical problem of student disengagement and underachievement in the middle years of schooling (Years 4 . 9) has focussed attention on the quality of educational programs in schools, in Australia and elsewhere. The loss of enthusiasm for science in the middle years is particularly problematic given the growing demand for science professionals. Reshaping middle years programs has included an emphasis on integrating Information and Communication Technologies (ICTs) and improving assessment practices to engage students in higher cognitive processes and enhance academic rigour. Understanding the nature of academic rigour and how to embed it in students. science assessment tasks that incorporate the use of ICTs could enable teachers to optimise the quality of the learning environment. However, academic rigour is not clearly described or defined in the literature and there is little empirical evidence upon which researchers and teachers could draw to enhance understandings. This study used a collective case study design to explore teachers' understandings of academic rigour within science assessment tasks. The research design is based on a conceptual framework that is underpinned by socio-cultural theory. Three methods were used to collect data from six middle years teachers and their students. These methods were a survey, focus group discussion with teachers and a group of students and individual semi-structured interviews with teachers. Findings of the case study revealed six criteria of academic rigour, namely, higher order thinking, alignment, building on prior knowledge, scaffolding, knowledge construction and creativity. Results showed that the middle years teachers held rich understandings of academic rigour that led to effective utilisation of ICTs in science assessment tasks. Findings also indicated that teachers could further enhance their understandings of academic rigour in some aspects of each of the criteria. In particular, this study found that academic rigour could have been further optimised by: promoting more thoughtful discourse and interaction to foster higher order thinking; increasing alignment between curriculum, pedagogy, and assessment, and students. prior knowledge; placing greater emphasis on identifying, activating and building on prior knowledge; better differentiating the level of scaffolding provided and applying it more judiciously; fostering creativity throughout tasks; enhancing teachers‟ content knowledge and pedagogical content knowledge, and providing more in-depth coverage of fewer topics to support knowledge construction. Key contributions of this study are a definition and a model which clarify the nature of academic rigour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Queensland University of Technology (QUT) allows the presentation of theses for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of ten published /submitted papers and book chapters of which nine have been published and one is under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of investigating multilevel topologies for high quality and high power applications, with specific emphasis on renewable energy systems. The rapid evolution of renewable energy within the last several years has resulted in the design of efficient power converters suitable for medium and high-power applications such as wind turbine and photovoltaic (PV) systems. Today, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements controlled by powerful processor systems. However, it is hard to connect the traditional converters to the high and medium voltage grids, as a single power switch cannot stand at high voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Besides this important feature, multilevel converters have the capability to generate stepped waveforms. Consequently, in comparison with conventional two-level inverters, they present lower switching losses, lower voltage stress across loads, lower electromagnetic interference (EMI) and higher quality output waveforms. These properties enable the connection of renewable energy sources directly to the grid without using expensive, bulky, heavy line transformers. Additionally, they minimize the size of the passive filter and increase the durability of electrical devices. However, multilevel converters have only been utilised in very particular applications, mainly due to the structural limitations, high cost and complexity of the multilevel converter system and control. New developments in the fields of power semiconductor switches and processors will favor the multilevel converters for many other fields of application. The main application for the multilevel converter presented in this work is the front-end power converter in renewable energy systems. Diode-clamped and cascade converters are the most common type of multilevel converters widely used in different renewable energy system applications. However, some drawbacks – such as capacitor voltage imbalance, number of components, and complexity of the control system – still exist, and these are investigated in the framework of this thesis. Various simulations using software simulation tools are undertaken and are used to study different cases. The feasibility of the developments is underlined with a series of experimental results. This thesis is divided into two main sections. The first section focuses on solving the capacitor voltage imbalance for a wide range of applications, and on decreasing the complexity of the control strategy on the inverter side. The idea of using sharing switches at the output structure of the DC-DC front-end converters is proposed to balance the series DC link capacitors. A new family of multioutput DC-DC converters is proposed for renewable energy systems connected to the DC link voltage of diode-clamped converters. The main objective of this type of converter is the sharing of the total output voltage into several series voltage levels using sharing switches. This solves the problems associated with capacitor voltage imbalance in diode-clamped multilevel converters. These converters adjust the variable and unregulated DC voltage generated by renewable energy systems (such as PV) to the desirable series multiple voltage levels at the inverter DC side. A multi-output boost (MOB) converter, with one inductor and series output voltage, is presented. This converter is suitable for renewable energy systems based on diode-clamped converters because it boosts the low output voltage and provides the series capacitor at the output side. A simple control strategy using cross voltage control with internal current loop is presented to obtain the desired voltage levels at the output voltage. The proposed topology and control strategy are validated by simulation and hardware results. Using the idea of voltage sharing switches, the circuit structure of different topologies of multi-output DC-DC converters – or multi-output voltage sharing (MOVS) converters – have been proposed. In order to verify the feasibility of this topology and its application, steady state and dynamic analyses have been carried out. Simulation and experiments using the proposed control strategy have verified the mathematical analysis. The second part of this thesis addresses the second problem of multilevel converters: the need to improve their quality with minimum cost and complexity. This is related to utilising asymmetrical multilevel topologies instead of conventional multilevel converters; this can increase the quality of output waveforms with a minimum number of components. It also allows for a reduction in the cost and complexity of systems while maintaining the same output quality, or for an increase in the quality while maintaining the same cost and complexity. Therefore, the asymmetrical configuration for two common types of multilevel converters – diode-clamped and cascade converters – is investigated. Also, as well as addressing the maximisation of the output voltage resolution, some technical issues – such as adjacent switching vectors – should be taken into account in asymmetrical multilevel configurations to keep the total harmonic distortion (THD) and switching losses to a minimum. Thus, the asymmetrical diode-clamped converter is proposed. An appropriate asymmetrical DC link arrangement is presented for four-level diode-clamped converters by keeping adjacent switching vectors. In this way, five-level inverter performance is achieved for the same level of complexity of the four-level inverter. Dealing with the capacitor voltage imbalance problem in asymmetrical diodeclamped converters has inspired the proposal for two different DC-DC topologies with a suitable control strategy. A Triple-Output Boost (TOB) converter and a Boost 3-Output Voltage Sharing (Boost-3OVS) converter connected to the four-level diode-clamped converter are proposed to arrange the proposed asymmetrical DC link for the high modulation indices and unity power factor. Cascade converters have shown their abilities and strengths in medium and high power applications. Using asymmetrical H-bridge inverters, more voltage levels can be generated in output voltage with the same number of components as the symmetrical converters. The concept of cascading multilevel H-bridge cells is used to propose a fifteen-level cascade inverter using a four-level H-bridge symmetrical diode-clamped converter, cascaded with classical two-level Hbridge inverters. A DC voltage ratio of cells is presented to obtain maximum voltage levels on output voltage, with adjacent switching vectors between all possible voltage levels; this can minimize the switching losses. This structure can save five isolated DC sources and twelve switches in comparison to conventional cascade converters with series two-level H bridge inverters. To increase the quality in presented hybrid topology with minimum number of components, a new cascade inverter is verified by cascading an asymmetrical four-level H-bridge diode-clamped inverter. An inverter with nineteen-level performance was achieved. This synthesizes more voltage levels with lower voltage and current THD, rather than using a symmetrical diode-clamped inverter with the same configuration and equivalent number of power components. Two different predictive current control methods for the switching states selection are proposed to minimise either losses or THD of voltage in hybrid converters. High voltage spikes at switching time in experimental results and investigation of a diode-clamped inverter structure raised another problem associated with high-level high voltage multilevel converters. Power switching components with fast switching, combined with hard switched-converters, produce high di/dt during turn off time. Thus, stray inductance of interconnections becomes an important issue and raises overvoltage and EMI issues correlated to the number of components. Planar busbar is a good candidate to reduce interconnection inductance in high power inverters compared with cables. The effect of different transient current loops on busbar physical structure of the high-voltage highlevel diode-clamped converters is highlighted. Design considerations of proper planar busbar are also presented to optimise the overall design of diode-clamped converters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel members are extensively used in the building construction industry, especially in residential, commercial and industrial buildings. In recent times, fire safety has become important in structural design due to increased fire damage to properties and loss of lives. However, past research into the fire performance of cold-formed steel members has been limited, and was confined to compression members. Therefore a research project was undertaken to investigate the structural behaviour of compact cold-formed steel lipped channel beams subject to inelastic local buckling and yielding, and lateral-torsional buckling effects under simulated fire conditions and associated section and member moment capacities. In the first phase of this research, an experimental study based on tensile coupon tests was undertaken to obtain the mechanical properties of elastic modulus and yield strength and the stress-strain relationship of cold-formed steels at uniform ambient and elevated temperatures up to 700oC. The mechanical properties deteriorated with increasing temperature and are likely to reduce the strength of cold-formed beams under fire conditions. Predictive equations were developed for yield strength and elastic modulus reduction factors while a modification was proposed for the stressstrain model at elevated temperatures. These results were used in the numerical modelling phases investigating the section and member moment capacities. The second phase of this research involved the development and validation of two finite element models to simulate the behaviour of compact cold-formed steel lipped channel beams subject to local buckling and yielding, and lateral-torsional buckling effects. Both models were first validated for elastic buckling. Lateral-torsional buckling tests of compact lipped channel beams were conducted at ambient temperature in order to validate the finite element model in predicting the non-linear ultimate strength behaviour. The results from this experimental study did not agree well with those from the developed experimental finite element model due to some unavoidable problems with testing. However, it highlighted the importance of magnitude and direction of initial geometric imperfection as well as the failure direction, and thus led to further enhancement of the finite element model. The finite element model for lateral-torsional buckling was then validated using the available experimental and numerical ultimate moment capacity results from past research. The third phase based on the validated finite element models included detailed parametric studies of section and member moment capacities of compact lipped channel beams at ambient temperature, and provided the basis for similar studies at elevated temperatures. The results showed the existence of inelastic reserve capacity for compact cold-formed steel beams at ambient temperature. However, full plastic capacity was not achieved by the mono-symmetric cold-formed steel beams. Suitable recommendations were made in relation to the accuracy and suitability of current design rules for section moment capacity. Comparison of member capacity results from finite element analyses with current design rules showed that they do not give accurate predictions of lateral-torsional buckling capacities at ambient temperature and hence new design rules were developed. The fourth phase of this research investigated the section and member moment capacities of compact lipped channel beams at uniform elevated temperatures based on detailed parametric studies using the validated finite element models. The results showed the existence of inelastic reserve capacity at elevated temperatures. Suitable recommendations were made in relation to the accuracy and suitability of current design rules for section moment capacity in fire design codes, ambient temperature design codes as well as those proposed by other researchers. The results showed that lateral-torsional buckling capacities are dependent on the ratio of yield strength and elasticity modulus reduction factors and the level of non-linearity in the stress-strain curves at elevated temperatures in addition to the temperature. Current design rules do not include the effects of non-linear stress-strain relationship and therefore their predictions were found to be inaccurate. Therefore a new design rule that uses a nonlinearity factor, which is defined as the ratio of the limit of proportionality to the yield stress at a given temperature, was developed for cold-formed steel beams subject to lateral-torsional buckling at elevated temperatures. This thesis presents the details and results of the experimental and numerical studies conducted in this research including a comparison of results with predictions using available design rules. It also presents the recommendations made regarding the accuracy of current design rules as well as the new developed design rules for coldformed steel beams both at ambient and elevated temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is about the derivation of the addition law on an arbitrary elliptic curve and efficiently adding points on this elliptic curve using the derived addition law. The outcomes of this research guarantee practical speedups in higher level operations which depend on point additions. In particular, the contributions immediately find applications in cryptology. Mastered by the 19th century mathematicians, the study of the theory of elliptic curves has been active for decades. Elliptic curves over finite fields made their way into public key cryptography in late 1980’s with independent proposals by Miller [Mil86] and Koblitz [Kob87]. Elliptic Curve Cryptography (ECC), following Miller’s and Koblitz’s proposals, employs the group of rational points on an elliptic curve in building discrete logarithm based public key cryptosystems. Starting from late 1990’s, the emergence of the ECC market has boosted the research in computational aspects of elliptic curves. This thesis falls into this same area of research where the main aim is to speed up the additions of rational points on an arbitrary elliptic curve (over a field of large characteristic). The outcomes of this work can be used to speed up applications which are based on elliptic curves, including cryptographic applications in ECC. The aforementioned goals of this thesis are achieved in five main steps. As the first step, this thesis brings together several algebraic tools in order to derive the unique group law of an elliptic curve. This step also includes an investigation of recent computer algebra packages relating to their capabilities. Although the group law is unique, its evaluation can be performed using abundant (in fact infinitely many) formulae. As the second step, this thesis progresses the finding of the best formulae for efficient addition of points. In the third step, the group law is stated explicitly by handling all possible summands. The fourth step presents the algorithms to be used for efficient point additions. In the fifth and final step, optimized software implementations of the proposed algorithms are presented in order to show that theoretical speedups of step four can be practically obtained. In each of the five steps, this thesis focuses on five forms of elliptic curves over finite fields of large characteristic. A list of these forms and their defining equations are given as follows: (a) Short Weierstrass form, y2 = x3 + ax + b, (b) Extended Jacobi quartic form, y2 = dx4 + 2ax2 + 1, (c) Twisted Hessian form, ax3 + y3 + 1 = dxy, (d) Twisted Edwards form, ax2 + y2 = 1 + dx2y2, (e) Twisted Jacobi intersection form, bs2 + c2 = 1, as2 + d2 = 1, These forms are the most promising candidates for efficient computations and thus considered in this work. Nevertheless, the methods employed in this thesis are capable of handling arbitrary elliptic curves. From a high level point of view, the following outcomes are achieved in this thesis. - Related literature results are brought together and further revisited. For most of the cases several missed formulae, algorithms, and efficient point representations are discovered. - Analogies are made among all studied forms. For instance, it is shown that two sets of affine addition formulae are sufficient to cover all possible affine inputs as long as the output is also an affine point in any of these forms. In the literature, many special cases, especially interactions with points at infinity were omitted from discussion. This thesis handles all of the possibilities. - Several new point doubling/addition formulae and algorithms are introduced, which are more efficient than the existing alternatives in the literature. Most notably, the speed of extended Jacobi quartic, twisted Edwards, and Jacobi intersection forms are improved. New unified addition formulae are proposed for short Weierstrass form. New coordinate systems are studied for the first time. - An optimized implementation is developed using a combination of generic x86-64 assembly instructions and the plain C language. The practical advantages of the proposed algorithms are supported by computer experiments. - All formulae, presented in the body of this thesis, are checked for correctness using computer algebra scripts together with details on register allocations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One way to build more sustainable cities through network technologies is to start with monitoring the level and usage of resources as well as encourage citizens to participate in sustainable everyday practices. This workshop focuses on three fundamental areas of sustainable cities through urban informatics and ubiquitous computing: Environment: climate change adaptation Health: Food practices and cultures Civic engagement: citizen participation and interaction In particular, the workshop seeks to come up with locally (Oulu) specific ‘mash-up’ solutions that enhance the interactions of citizens with the physical city using data from various sources such as sensor networks. Students will work in groups to research, analyze, design, and develop local mash-ups. The workshop is designed to help students gain understanding of sustainability in a techno-social context, such as how the existing data can be effectively utilized, how to gather new data, and how to design efficient and engaging computer-human interactions. Further issues of consideration include access to and privacy of information and spaces, cultural specificities, and transdisciplinary research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A graduate destination survey can provide a snap shot in time of a graduate’s career progression and outcome. This paper will present the results of a Queensland University of Technology study exploring the employment outcomes of students who had completed a library and information science course from the Faculty of Information Technology between 2000 and 2008. Seventy-four graduates completed an online questionnaire administered in July 2009. The study found that 90% of the graduates surveyed were working and living in Queensland, with over three quarters living and working in Brisbane. Nearly 70% were working full-time, while only 1.4% indicating that they were unemployed and looking for work. Over 80% of the graduates identified themselves as working in “librarianship”. This study is the first step in understanding the progression and destination of QUT’s library and information science graduates. It is recommended that this survey becomes an ongoing initiative so that the results can be analysed and compared over time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ad hoc networks are vulnerable to attacks due to distributed nature and lack of infrastructure. Intrusion detection systems (IDS) provide audit and monitoring capabilities that offer the local security to a node and help to perceive the specific trust level of other nodes. The clustering protocols can be taken as an additional advantage in these processing constrained networks to collaboratively detect intrusions with less power usage and minimal overhead. Existing clustering protocols are not suitable for intrusion detection purposes, because they are linked with the routes. The route establishment and route renewal affects the clusters and as a consequence, the processing and traffic overhead increases due to instability of clusters. The ad hoc networks are battery and power constraint, and therefore a trusted monitoring node should be available to detect and respond against intrusions in time. This can be achieved only if the clusters are stable for a long period of time. If the clusters are regularly changed due to routes, the intrusion detection will not prove to be effective. Therefore, a generalized clustering algorithm has been proposed that can run on top of any routing protocol and can monitor the intrusions constantly irrespective of the routes. The proposed simplified clustering scheme has been used to detect intrusions, resulting in high detection rates and low processing and memory overhead irrespective of the routes, connections, traffic types and mobility of nodes in the network. Clustering is also useful to detect intrusions collaboratively since an individual node can neither detect the malicious node alone nor it can take action against that node on its own.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mobile ad-hoc networks (MANETs) are temporary wireless networks useful in emergency rescue services, battlefields operations, mobile conferencing and a variety of other useful applications. Due to dynamic nature and lack of centralized monitoring points, these networks are highly vulnerable to attacks. Intrusion detection systems (IDS) provide audit and monitoring capabilities that offer the local security to a node and help to perceive the specific trust level of other nodes. We take benefit of the clustering concept in MANETs for the effective communication between nodes, where each cluster involves a number of member nodes and is managed by a cluster-head. It can be taken as an advantage in these battery and memory constrained networks for the purpose of intrusion detection, by separating tasks for the head and member nodes, at the same time providing opportunity for launching collaborative detection approach. The clustering schemes are generally used for the routing purposes to enhance the route efficiency. However, the effect of change of a cluster tends to change the route; thus degrades the performance. This paper presents a low overhead clustering algorithm for the benefit of detecting intrusion rather than efficient routing. It also discusses the intrusion detection techniques with the help of this simplified clustering scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unified Enterprise application security is a new emerging approach for providing protection against application level attacks. Conventional application security approach that consists of embedding security into each critical application leads towards scattered security mechanism that is not only difficult to manage but also creates security loopholes. According to the CSIIFBI computer crime survey report, almost 80% of the security breaches come from authorized users. In this paper, we have worked on the concept of unified security model, which manages all security aspect from a single security window. The basic idea is to keep business functionality separate from security components of the application. Our main focus was on the designing of frame work for unified layer which supports single point of policy control, centralize logging mechanism, granular, context aware access control, and independent from any underlying authentication technology and authorization policy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: To draw on empirical evidence to illustrate the core role of nurse practitioners in Australia and New Zealand. BACKGROUND: Enacted legislation provides for mutual recognition of qualifications, including nursing, between New Zealand and Australia. As the nurse practitioner role is relatively new in both countries, there is no consistency in role expectation and hence mutual recognition has not yet been applied to nurse practitioners. A study jointly commissioned by both countries' Regulatory Boards developed information on the core role of the nurse practitioner, to develop shared competency and educational standards. Reporting on this study's process and outcomes provides insights that are relevant both locally and internationally. METHOD: This interpretive study used multiple data sources, including published and grey literature, policy documents, nurse practitioner program curricula and interviews with 15 nurse practitioners from the two countries. Data were analysed according to the appropriate standard for each data type and included both deductive and inductive methods. The data were aggregated thematically according to patterns within and across the interview and material data. FINDINGS: The core role of the nurse practitioner was identified as having three components: dynamic practice, professional efficacy and clinical leadership. Nurse practitioner practice is dynamic and involves the application of high level clinical knowledge and skills in a wide range of contexts. The nurse practitioner demonstrates professional efficacy, enhanced by an extended range of autonomy that includes legislated privileges. The nurse practitioner is a clinical leader with a readiness and an obligation to advocate for their client base and their profession at the systems level of health care. CONCLUSION: A clearly articulated and research informed description of the core role of the nurse practitioner provides the basis for development of educational and practice competency standards. These research findings provide new perspectives to inform the international debate about this extended level of nursing practice. RELEVANCE TO CLINICAL PRACTICE: The findings from this research have the potential to achieve a standardised approach and internationally consistent nomenclature for the nurse practitioner role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – Building project management requires real time flow of information between all the project team members or the supply chain members. In the present scenario, when project participants are geographically separated, adoption of Information Communication Technology (ICT) enables such effective communication. But strategic adoption of ICT requires that all the supply chain members follow the accepted methods of communication or the communication protocols. The majority of the construction organizations are small and medium enterprises (SMEs). This research, therefore, proposes to focus on developing IT-enhanced communication protocols for building project management by SMEs. Design/methodology/approach – The research adopts a sequential mixed methods approach, where data collection and analysis are conducted in both the quantitative and qualitative phases of research. Findings – The protocols are proposed as a “Strategic Model for Enhancing ICT Diffusion in Building Projects”. The framework for the model is discussed at three levels of study, i.e industry, organization, and people. Practical implications – While the research was conducted in an Indian context, the research outcome is envisaged to be widely applicable in other countries with due considerations. Originality/value – The developed framework has implications for national level bodies and academic institutions, organizations, people or project managers and is applicable at the international level after due considerations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the design and implementation of a public-key platform, secFleck, based on a commodity Trusted Platform Module (TPM) chip that extends the capability of a standard node. Unlike previous software public-key implementations this approach provides E- Commerce grade security; is computationally fast, energy efficient; and has low financial cost — all essential attributes for secure large-scale sen- sor networks. We describe the secFleck message security services such as confidentiality, authenticity and integrity, and present performance re- sults including computation time, energy consumption and cost. This is followed by examples, built on secFleck, of symmetric key management, secure RPC and secure software update.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Communication security for wireless sensor networks (WSN) is a challenge due to the limited computation and energy resources available at nodes. We describe the design and implementation of a public-key (PK) platform based on a standard Trusted Platform Module (TPM) chip that extends the capability of a standard node. The result facilitates message security services such as confidentiality, authenticity and integrity. We present results including computation time, energy consumption and cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technology and Nursing Practice explains and critically engages with the practice implications of technology for nursing. It takes a broad view of technology, covering not only health informatics, but also 'tele-nursing' and the use of equipment in clinical practice.