997 resultados para THIN FOIL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the radially symmetric nonlinear von Kármán plate equations for circular or annular plates in the limit of small thickness. The loads on the plate consist of a radially symmetric pressure load and a uniform edge load. The dependence of the steady states on the edge load and thickness is studied using asymptotics as well as numerical calculations. The von Kármán plate equations are a singular perturbation of the Fӧppl membrane equation in the asymptotic limit of small thickness. We study the role of compressive membrane solutions in the small thickness asymptotic behavior of the plate solutions.

We give evidence for the existence of a singular compressive solution for the circular membrane and show by a singular perturbation expansion that the nonsingular compressive solution approach this singular solution as the radial stress at the center of the plate vanishes. In this limit, an infinite number of folds occur with respect to the edge load. Similar behavior is observed for the annular membrane with zero edge load at the inner radius in the limit as the circumferential stress vanishes.

We develop multiscale expansions, which are asymptotic to members of this family for plates with edges that are elastically supported against rotation. At some thicknesses this approximation breaks down and a boundary layer appears at the center of the plate. In the limit of small normal load, the points of breakdown approach the bifurcation points corresponding to buckling of the nondeflected state. A uniform asymptotic expansion for small thickness combining the boundary layer with a multiscale approximation of the outer solution is developed for this case. These approximations complement the well known boundary layer expansions based on tensile membrane solutions in describing the bending and stretching of thin plates. The approximation becomes inconsistent as the clamped state is approached by increasing the resistance against rotation at the edge. We prove that such an expansion for the clamped circular plate cannot exist unless the pressure load is self-equilibrating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some aspects of wave propagation in thin elastic shells are considered. The governing equations are derived by a method which makes their relationship to the exact equations of linear elasticity quite clear. Finite wave propagation speeds are ensured by the inclusion of the appropriate physical effects.

The problem of a constant pressure front moving with constant velocity along a semi-infinite circular cylindrical shell is studied. The behavior of the solution immediately under the leading wave is found, as well as the short time solution behind the characteristic wavefronts. The main long time disturbance is found to travel with the velocity of very long longitudinal waves in a bar and an expression for this part of the solution is given.

When a constant moment is applied to the lip of an open spherical shell, there is an interesting effect due to the focusing of the waves. This phenomenon is studied and an expression is derived for the wavefront behavior for the first passage of the leading wave and its first reflection.

For the two problems mentioned, the method used involves reducing the governing partial differential equations to ordinary differential equations by means of a Laplace transform in time. The information sought is then extracted by doing the appropriate asymptotic expansion with the Laplace variable as parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study on the angular distribution and conversion of multi-keV X-ray sources produced from 2 ns-duration 527nm laser irradiated thick-foil targets on Shenguang II laser facility (SG-II) is reported. The angular distributions measured in front of the targets can be fitted with the function of f(theta) = alpha+ (1- alpha)cos(beta) theta (theta is the viewing angle relative to the target normal), where alpha = 0.41 +/- 0.014, beta = 0.77 +/- 0.04 for Ti K-shell X-ray Sources (similar to 4.75 keV for Ti K-shell), and alpha = 0.085 +/- 0.06, beta = 0.59 +/- 0.07 for Ag/Pd/Mo L-shell X-ray Sources (2-2.8 keV for Mo L-shell, 2.8-3.5 keV for Pd L-shell, and 3-3.8 keV for Ag L-shell). The isotropy of the angular-distribution of L-shell emission is worse than that of the K-shell emission at larger viewing angle (>70 degrees), due to its larger optical depth (stronger self-absorption) in the cold plasma side lobe Surrounding the central emission region, and in the central hot plasma region (emission region). There is no observable difference in the angular distributions of the L-shell X-ray emission among Ag, Pd, and Mo. The conversion efficiency of Ag/Pd/Mo L-shell X-ray sources is higher than that of the Ti K-shell X-ray sources, but the gain relative to the K-shell emission is not as high as that by using short pulse lasers. The conversion efficiency of the L-shell X-ray sources decrease, with increasing atomic numbers (or X-ray photon energy), similar to the behavior of the K-shell X-ray Source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particle-in-cell simulations are performed to study the acceleration of ions due to the interaction of a relativistic femtosecond laser pulse with a narrow thin target. The numerical results show that ions can be accelerated in a cascade by two electrostatic fields if the width of the target is smaller than the laser beam waist. The first field is formed in front of the target by the central part of the laser beam, which pushes the electron layer inward. The major part of the abaxial laser energy propagates along the edges to the rear side of the target and pulls out some hot electrons from the edges of the target, which form another electrostatic field at the rear side of the target. The ions from the front surface are accelerated stepwise by these two electrostatic fields to high energies at the rear side of the target. The simulations show that the largest ion energy gain for a narrow target is about four times higher than in the case of a wide target. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Future fossil fuel scarcity and environmental degradation have demonstrated the need for renewable, low-carbon sources of energy to power an increasingly industrialized world. Solar energy with its infinite supply makes it an extraordinary resource that should not go unused. However with current materials, adoption is limited by cost and so a paradigm shift must occur to get everyone on the same page embracing solar technology. Cuprous Oxide (Cu2O) is a promising earth abundant material that can be a great alternative to traditional thin-film photovoltaic materials like CIGS, CdTe, etc. We have prepared Cu2O bulk substrates by the thermal oxidation of copper foils as well Cu2O thin films deposited via plasma-assisted Molecular Beam Epitaxy. From preliminary Hall measurements it was determined that Cu2O would need to be doped extrinsically. This was further confirmed by simulations of ZnO/Cu2O heterojunctions. A cyclic interdependence between, defect concentration, minority carrier lifetime, film thickness, and carrier concentration manifests itself a primary reason for why efficiencies greater than 4% has yet to be realized. Our growth methodology for our thin-film heterostructures allow precise control of the number of defects that incorporate into our film during both equilibrium and nonequilibrium growth. We also report process flow/device design/fabrication techniques in order to create a device. A typical device without any optimizations exhibited open-circuit voltages Voc, values in excess 500mV; nearly 18% greater than previous solid state devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrashort light-matter interactions between a linear chirped pulse and a biased semiconductor thin film GaAs are investigated. Using different chirped pulses, the dependence of infrared spectra on chirp rate is demonstrated for a 5 fs pulse. It is found that the infrared spectra can be controlled by the linear chirp of the pulse. Furthermore, the infrared spectral intensity could be enhanced by two orders of magnitude via appropriately choosing values of the linear chirp rates. Our results suggest a possible scheme to control the infrared signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To explain the ^(26)Mg isotopic anomaly seen in meteorites (^(26)Al daughter) as well as the observation of 1809-keV γ rays in the interstellar medium (live decay of 26Al) one must know, among other things, the destruction rate of ^(26)Al. Properties of states in ^(27)Si just above the ^(26)Al + p mass were investigated to determine the destruction rate of ^(26)Al via the ^(26)Al(p,γ)^(27)Si reaction at astrophysical temperatures.

Twenty micrograms of ^(26)Al were used to produce two types of Al_2O_3 targets by evaporation of the oxide. One was onto a thick platinum backing suitable for (p,γ) work, and the other onto a thin carbon foil for the (^3He,d) reaction.

The ^(26)Al(p,γ)^(27)Si excitation function, obtained using a germanium detector and voltage-ramped target, confirmed known resonances and revealed new ones at 770, 847, 876, 917, and 928 keV. Possible resonances below the lowest observed one at E_p = 286 keV were investigated using the ^(26)Al(^3He,d)^(27)Si proton-transfer reaction. States in 27Si corresponding to 196- and 286-keV proton resonances were observed. A possible resonance at 130 keV (postulated in prior work) was shown to have a strength of wγ less than 0.02 µeV.

By arranging four large Nal detector as a 47π calorimeter, the 196-keV proton resonance, and one at 247 keV, were observed directly, having wγ = 55± 9 and 10 ± 5 µeV, respectively.

Large uncertainties in the reaction rate have been reduced. At novae temperatures, the rate is about 100 times faster than that used in recent model calculations, casting some doubt on novae production of galactic ^(26)Al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The damage morphologies, threshold fluences in ZnO films were studied with femtosecond laser pulses. Time-resolved reflectivity and transmissivity have been measured by the pump-probe technique at different pump fluences and wavelengths. The results indicate that two-phase transition is the dominant damage mechanism, which is similar to that in narrow band gap semiconductors. The estimated energy loss rate of conduction electrons is 1.5 eV/ps. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Edge Function method formerly developed by Quinlan(25) is applied to solve the problem of thin elastic plates resting on spring supported foundations subjected to lateral loads the method can be applied to plates of any convex polygonal shapes, however, since most plates are rectangular in shape, this specific class is investigated in this thesis. The method discussed can also be applied easily to other kinds of foundation models (e.g. springs connected to each other by a membrane) as long as the resulting differential equation is linear. In chapter VII, solution of a specific problem is compared with a known solution from literature. In chapter VIII, further comparisons are given. The problems of concentrated load on an edge and later on a corner of a plate as long as they are far away from other boundaries are also given in the chapter and generalized to other loading intensities and/or plates springs constants for Poisson's ratio equal to 0.2