959 resultados para TEMPERATURE MOLTEN-SALT
Resumo:
In this paper, we report an enhancement in ionic conductivity in a new nano-composite solid polymer electrolyte namely, (PEG) (x) LiBr: y(SiO2). The samples were prepared, characterized, and investigated by XRD, IR, NMR, and impedance spectroscopy. Conductivity as a function of salt concentration shows a double peak. Five weight percent addition of silica nanoparticles increases the ionic conductivity by two orders of magnitude. Conductivity exhibits an Arrhenius type dependence on temperature. IR study has shown that the existence of nanoparticles in the vicinity of terminal OaEuro center dot H group results in a shift in IR absorption frequency and increase in amplitude of vibration of the terminal OaEuro center dot H group. This might lead to an enhancement in conductivity due to increased segmental motion of the polymer. Li-7 NMR spectroscopic studies also seem to support this. Thus addition of nanoparticle inert fillers still seems to be a promising technique to enhance the ionic conductivity in solid polymer electrolytes.
Resumo:
Electrochemical reduction of exfoliated graphene oxide, prepared from pre-exfoliated graphite, in acetamide-urea-ammonium nitrate ternary eutectic melt results in few layer-graphene thin films. Negatively charged exfoliated graphene oxide is attached to positively charged cystamine monolyer self-assembled on a gold surface. Electrochemical reduction of the oriented graphene oxide film is carried out in a room temperature, ternary molten electrolyte. The reduced film is characterized by atomic force microscopy (AFM), conductive AFM, Fourier-transform infrared spectroscopy and Raman spectroscopy. Ternary eutectic melt is found to be a suitable medium for the regulated reduction of graphene oxide to reduced graphene oxide-based sheets on conducting surfaces. (C) 2010 Elsevier B.V. All rights reserved.
Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes
Resumo:
InN/GaN heterostructure based Schottky diodes were fabricated by plasma-assisted molecular beam epitaxy. The temperature dependent electrical transport properties were carried out for InN/GaN heterostructure. The barrier height and the ideality factor of the Schottky diodes were found to be temperature dependent. The temperature dependence of the barrier height indicates that the Schottky barrier height is inhomogeneous in nature at the heterostructure interface. The higher value of the ideality factor and its temperature dependence suggest that the current transport is primarily dominated by thermionic field emission (TFE) other than thermionic emission (TE). The room temperature barrier height obtained by using TE and TFE models were 1.08 and 1.43 eV, respectively. (C) 2011 American Institute of Physics. doi: 10.1063/1.3549685]
Resumo:
The title compound 4,4,6,6-tetrakis(dimethylamino)-2 lambda(5),4 lambda(5),6 lambda(5)-cyclotriphosphaza- 1,3,5-trien-1-ium-2-spiro-2'-(2'-phospha-1',3'-diazacyclohexane) tetrachloroplatinate, [HN3P3(NMe(2))(4)(NHCH2CH2CH2NH)](2)-[PtCl4], contains a cyclophosphazenium cation in which the hetero-substituted (amino)spirocyclic cyclotriphosphazene is protonated. The protonation has occurred on one of the P3N3 ring N atoms adjacent to the spiro P atom. The protonation results in lengthening of the ring P-N bonds and puckering of the phosphazene ring. In the crystal lattice, 2n cyclophosphazenium cations are connected by n [PtCl4](2-) anions mediated by N-H...Cl hydrogen bonds to form a linear polymeric structure.
Resumo:
Low-cycle fatigue (LCF) responses of NIMONIC PE-16 for various prior microstructures and strain amplitudes have been evaluated and the fatigue behavior has been explained in terms of the operative deformation mechanisms. Total strain-controlled LCF tests were performed at 923 K on samples possessing three different prior microstructures: alloy A in solution-annealed condition (free of γ′ and carbides), alloy B with double aging treatment (spherical γ′ of 18-nm diameter and M23C6), and alloy C with another double aging treatment (γ′ of size 35 nm, MC and M23C6). All three microstructures exhibited an intial cyclic hardening followed by a period of gradual softening at 923 K. Coffin-Manson plots describing the plastic strain amplitudevs number of reversals to failure showed that alloy A had maximum fatigue life while C showed the least. Alloy B exhibited a two-slope behavior in the Coffin-Manson plot over the strain amplitudes investigated. This has been ascribed to the change in the degree of homogeneity of deformation at high and low strain amplitudes. Transmission electron microscopic studies were carried out to characterize the various deformation mechanisms and precipitation reactions occurring during fatigue testign. Fresh precipitation of fine γ′ was confirmed by the development of “mottled contrast” in alloy C. Evidence for the shearing of the ordered γ′ precipitates was revealed by the presence of superdislocations in alloy C. Repeated shearing during cyclic loading led to the reduction in the size of the γ′ and consequent softening. Coarser γ′ precipitates were associated with Orowan loops. The observed fatigue behavior has been rationalized based on the micromechanisms stated above and on the degree of homogenization of slip assessed by slipband spacing measurements on tested samples.
Resumo:
Tri(amino)silanes were prepared by the condensation of trichlorosilane with secondary amines in 1:6 molar ratio. Reactions of trichlorosilane with pyrrolidine, piperidine, hexamethyleneimine, morpholine, N-methylpiperazine and diethylamine afford the tri(amino)silanes in nearly quantitative yields. Their physical and spectroscopic properties are discussed. All these compounds are highly sensitive to moisture and hydrolyse to silica and the respective amine with the evolution of hydrogen. The compounds have been characterised by IR, 1H NMR, [1H]29Si NMR spectroscopic methods and CHN elemental analysis.
Resumo:
The hot-working characteristics of Zircaloy-2 have been studied in the temperature range of 650 to 950°C and in the strain-rate range of 10−3 to 102 s−1 using power dissipation maps which describe the variation of the efficiency of power dissipation, η = 2m /(m + 1) where m is the strain-rate sensitivity of flow stress. The individual domains exhibited by the map have been interpreted and validated by detailed metallographic investigations. Dynamic recrystallization occurs in the temperature range of 730 to 830°C and in the strain-rate range of 10−2 to 2 s−1. The peak efficiency occurs at 800°C and 0.1 s−1 which may be considered as the optimum hot-working parameters in the α-phase field of Zircaloy-2. Superplastic behaviour, characterized by a high efficiency of power dissipation is observed at temperatures greater than 860°C and at strain rates lower than 10−2 s−1. When deformed at 650°C and 10−3 s−1, the primary restoration mechanism is dynamic recovery, while at rates higher than 2s−1, the material exhibits microstructural instabilities in the form of localized shear bands.
Resumo:
The combined milling at cryogenic temperature as well as room temperature (RT) has been carried out to prepare ultrafine NaCl crystallites. The milling has been done in evacuated tungsten carbide vials backfilled with high-purity Ar. The results indicate the effect duration of cryomilling prior to RT milling has a strong effect on the final crystallite size. The deformation aided sintering of NaCl crystallites during RT milling and leads to the formation of bimodal distribution of crystallites. The cuboidal-shaped NaCl crystallite undergoes a roughening transition due to plastic deformation. The experimental results are explained using the temperature-dependent mechanical properties of NaCl single crystals and plastic-deformation-induced roughening.
Resumo:
Tensile experiments at 673 K and grain sizes from similar to 8 to 17 mu m revealed large ductility at a low strain rate and a reduced ductility at a high strain rate, corresponding to a change from a high to a low value for the strain rate sensitivity. High strain rate deformation led to fracture by flow localization, whereas low strain rate deformation involved fracture by cavity nucleation and growth. Analysis revealed that grain boundary migration can assist significantly in reducing the stress concentrations caused by grain boundary sliding, thereby retarding cavity nucleation. Calculations demonstrate that the interlinkage of voids parallel and perpendicular to the tensile axis occurs significantly, so that it is not always possible to use the cavity shapes to distinguish between diffusion and plasticity controlled growth. Cavitation damage evolves slowly in materials with a coarser grain size because of reduced nucleation related to a reduction in the strain rate sensitivity and associated grain boundary sliding. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Strain-rate effects on the low-cycle fatigue (LCF) behavior of a NIMONIC PE-16 superalloy have been evaluated in the temperature range of 523 to 923 K. Total-strain-controlled fatigue tests were per-formed at a strain amplitude of +/-0.6 pct on samples possessing two different prior microstructures: microstructure A, in the solution-annealed condition (free of gamma' and carbides); and microstructure B, in a double-aged condition with gamma' of 18-nm diameter and M23C6 carbides. The cyclic stress response behavior of the alloy was found to depend on the prior microstructure, testing temperature, and strain rate. A softening regime was found to be associated with shearing of ordered gamma' that were either formed during testing or present in the prior microstructure. Various manifestations of dynamic strain aging (DSA) included negative strain rate-stress response, serrations on the stress-strain hysteresis loops, and increased work-hardening rate. The calculated activation energy matched well with that for self-diffusion of Al and Ti in the matrix. Fatigue life increased with an increase in strain rate from 3 x 10(-5) to 3 x 10(-3) s-1, but decreased with further increases in strain rate. At 723 and 823 K and low strain rates, DSA influenced the deformation and fracture behavior of the alloy. Dynamic strain aging increased the strain localization in planar slip bands, and impingement of these bands caused internal grain-boundary cracks and reduced fatigue life. However, at 923 K and low strain rates, fatigue crack initiation and propagation were accelerated by high-temperature oxidation, and the reduced fatigue life was attributed to oxidation-fatigue interaction. Fatigue life was maximum at the intermediate strain rates, where strain localization was lower. Strain localization as a function of strain rate and temperature was quantified by optical and scanning electron microscopy and correlated with fatigue life.
Resumo:
High-temperature reactions (Ca 900-degrees-C) involving albite, K-feldspar or plagioclase and K, Ba-or K, Sr chlorides were experimentally studied. These experiments reveal that the reaction between K-exchanged albite, potash feldspar, or plagioclase and Ba-chloride/Ba-K chloride results in the formation of celsian by the breakdown of the starting feldspar structure above 800-degrees-C. Sr-feldspar does not form under similar conditions. A size-effect of the large M-site cation appears to be responsible for the formation of celsian. The reaction between K-feldspar and barium chloride may be used as a method for synthesizing celsian.
Resumo:
Bi3+ ions substituting at Ba-sites in a limited concentration range with another donor dopant occupying the Ti-sites in polycrystalline BaTiO3 enhanced the positive temperature coefficient of resistance (PTCR) by over seven orders of magnitude. These ceramics did not require normal post sinter annealing or a change to an oxygen atmosphere during annealing. These ceramics had low porosities coupled with better stabilities to large applied electric fields and chemically reducing atmospheres. Bi3+ ions limited the grain growth to less than 8 mum in size, they enhanced the concentration of acceptor-type trap centres at the grain-boundary-layer regions and maintained complete tetragonality at low grain sizes in BaTiO3 ceramics.
Resumo:
Phase relations in the system Mn-Rh-O are established at 1273 K by equilibrating different compositions either in evacuated quartz ampules or in pure oxygen at a pressure of 1.01 x 10(5) Pa. The quenched samples are examined by optical microscopy, X-ray diffraction, and energy-dispersive X-ray analysis (EDAX). The alloys and intermetallics in the binary Mn-Rh system are found to be in equilibrium with MnO. There is only one ternary compound, MnRh2O4, with normal spinel structure in the system. The compound Mn3O4 has a tetragonal structure at 1273 K. A solid solution is formed between MnRh2O4 and Mn3O4. The solid solution has the cubic structure over a large range of composition and coexists with metallic rhodium. The partial pressure of oxygen corresponding to this two-phase equilibrium is measured as a function of the composition of the spinel solid solution and temperature. A new solid-state cell, with three separate electrode compartments, is designed to measure accurately the chemical potential of oxygen in the two-phase mixture, Rh + Mn3-2xRh2xO4, which has 1 degree of freedom at constant temperature. From the electromotive force (emf), thermodynamic mixing properties of the Mn3O4-MnRh2O4 solid solution and Gibbs energy of formation of MnRh2O4 are deduced. The activities exhibit negative deviations from Raoult's law for most of the composition range, except near Mn3O4, where a two-phase region exists. In the cubic phase, the entropy of mixing of the two Rh3+ and Mn3+ ions on the octahedral site of the spinel is ideal, and the enthalpy of mixing is positive and symmetric with respect to composition. For the formation of the spinel (sp) from component oxides with rock salt (rs) and orthorhombic (orth) structures according to the reaction, MnO (rs) + Rh2O3 (orth) --> MnRh2O4 (sp), DELTAG-degrees = -49,680 + 1.56T (+/-500) J mol-1. The oxygen potentials corresponding to MnO + Mn3O4 and Rh + Rh2O3 equilibria are also obtained from potentiometric measurements on galvanic cells incorporating yttria-stabilized zirconia as the solid electrolyte. From these results, an oxygen potential diagram for the ternary system is developed.
Resumo:
The temperature-programmed desorption (TPD) and temperature-programmed surface reaction (TPSR) of thiophene over a series of Co-Mo/gamma-Al2O3, hydrodesulfurization (HDS) catalysts with varying Co to Mo ratios have been studied with the objective of understanding the promotional role of Co in the HDS reaction. As part of the study, the desorptions (TPD) and hydrogenations (TPSR) of butane, butene, and butadiene over these catalysts have also been investigated. The TPD of the hydrocarbons over catalysts containing no Co showed a single desorption profile while incorporation of Co created an additional site, with higher heats of desorption, without significantly affecting desorption from the original site. The TPSR measurements showed that the two sites had separate and independent activity for the hydrogenation of the C-4 hydrocarbons. The TPD of thiophene over catalysts with varying Co to Mo ratios showed a single desorption profile with identical heats of desorption, implying that Co does not affect or influence the adsorption sites for thiophene. The TPSR of the HDS of thiophene, however, showed that, although the products of the HDS reaction-butane, butene, and H2S-are the same irrespective of the Co content, the temperature profiles and the activation barriers for the formation of these species show considerable change with the Co/Co+Mo ratio. The results are discussed in light of the existing models for the promotional role of Co in the HDS reaction.
Resumo:
The temperature programmed-desorption (TPD) of butane, butene, butadiene and thiophene over a series of Co-MO/gamma-Al2O3 catalysts with varying Co to Mo ratio has been investigated. The TPD of butane, butene and butadiene over catalysts containing no Co showed a single desorption profile while incorporation of Co created an additional site without significantly affecting desorption from the original site. The TPD of thiophene over a series of catalysts with varying Co content showed identical desorption temperature as well as heat of desorption. It was concluded that thiophene was adsorbed on the ''Mo-S'' component of the catalyst and was unaffected by the presence of Co.