902 resultados para T-Lymphocytes, Regulatory -- immunology
Resumo:
Although regulation of CXCR3 and CCR4 is related to Th1 and Th2 differentiation, respectively, many CXCR3(+) and CCR4(+) cells do not express IFN-gamma and/or IL-4, suggesting that the chemokine receptor genes might be inducible by mechanisms that are lineage-independent. We investigated the regulation of CXCR3 versus IFNG, and CCR4 versus IL4 in human CD4(+) T cells by analyzing modifications of histone H3. In naive cord-blood cells, under nonpolarizing conditions not inducing IL4, CCR4 was induced to high levels without many of the activation-associated changes in promoter histone H3 found for both IL4 and CCR4 in Th2 cells. Importantly, CCR4 expression was stable in Th2 cells, but fell in nonpolarized cells after the cells were rested; this decline could be reversed by increasing histone acetylation using sodium butyrate. Patterns of histone H3 modifications in CXCR3(+) CCR4(-) and CXCR3(-) CCR4(+) CD4(+) T-cell subsets from adult blood matched those in cells cultured under polarizing conditions in vitro. Our data show that high-level lineage-independent induction of CCR4 can occur following T-cell activation without accessibility-associated changes in histone H3, but that without such changes expression is transient rather than persistent.
Resumo:
T-cell immunity has been claimed as the main immunoprotective mechanism against Paracoccidioides brasiliensis infection, the most important fungal infection in Latin America. As the initial events that control T-cell activation in paracoccidioidomycosis (PCM) are not well established, we decided to investigate the role of CD28, an important costimulatory molecule for the activation of effector and regulatory T cells, in the immunity against this pulmonary pathogen. Using CD28-deficient (CD28(-/-)) and normal wild-type (WT) C57BL/6 mice, we were able to demonstrate that CD28 costimulation determines in pulmonary paracoccidioidomycosis an early immunoprotection but a late deleterious effect associated with impaired immunity and uncontrolled fungal growth. Up to week 10 postinfection, CD28(-/-) mice presented increased pulmonary and hepatic fungal loads allied with diminished production of antibodies and pro-and anti-inflammatory cytokines besides impaired activation and migration of effector and regulatory T (Treg) cells to the lungs. Unexpectedly, CD28-sufficient mice progressively lost the control of fungal growth, resulting in an increased mortality associated with persistent presence of Treg cells, deactivation of inflammatory macrophages and T cells, prevalent presence of anti-inflammatory cytokines, elevated fungal burdens, and extensive hepatic lesions. As a whole, our findings suggest that CD28 is required for the early protective T-cell responses to P. brasiliensis infection, but it also induces the expansion of regulatory circuits that lately impair adaptive immunity, allowing uncontrolled fungal growth and overwhelming infection, which leads to precocious mortality of mice.
Resumo:
Over the past 20 y, the hormone melatonin was found to be produced in extrapineal sites, including cells of the immune system. Despite the increasing data regarding the biological effects of melatonin on the regulation of the immune system, the effect of this molecule on T cell survival remains largely unknown. Activation-induced cell death plays a critical role in the maintenance of the homeostasis of the immune system by eliminating self-reactive or chronically stimulated T cells. Because activated T cells not only synthesize melatonin but also respond to it, we investigated whether melatonin could modulate activation-induced cell death. We found that melatonin protects human and murine CD4(+) T cells from apoptosis by inhibiting CD95 ligand mRNA and protein upregulation in response to TCR/CD3 stimulation. This inhibition is a result of the interference with calmodulin/calcineurin activation of NFAT that prevents the translocation of NFAT to the nucleus. Accordingly, melatonin has no effect on T cells transfected with a constitutively active form of NFAT capable of migrating to the nucleus and transactivating target genes in the absence of calcineurin activity. Our results revealed a novel biochemical pathway that regulates the expression of CD95 ligand and potentially other downstream targets of NFAT activation. The Journal of Immunology, 2010, 184: 3487-3494.
Resumo:
The intestinal tract is a peculiar environment due to its constant contact with the microbiota agents, food antigens and other molecules. Such exposure requires the establishment of important regulatory mechanisms in order to avoid inflammatory response and self aggression. In this context, the GALT plays a very relevant role due to the presence of several different cellular populations which are the main players in this phenomenon. Moreover, it was described a while ago that the oral ingestion of a given molecule is able to induce systemic tolerance to the same molecule when it is used as an immunogen by parenteral route, known as oral tolerance. This observation led researches to use these mechanisms to induce tolerance against cognate antigens of different autoimmune diseases. In this context, in this review we focused on several tolerance inducing mechanisms which are relevant not only for the maintenance of intestinal tract but also for the suppression of T effector cells, such as Th1, Th2 and the newly described Th17 cells. To name a few, CD103(+) dendritic cells, Tr1 cells derived IL-10 secretion, Foxp3 conversion and CD4(+)LAP(+) regulatory cells induction are among the recently described features of the tolerogenic environment of the intestinal tract. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Renal ischemia and reperfusion injury (IRI) is considered an inflammatory syndrome. To move forward in its pathogenesis, we exploited the role of several cytokines on renal damages triggered by IRI. Specifically to evaluate the role of Th1 immune profile in this system, IL-12, IFN-gamma, and IFN-gamma/IL-12 deficient (KO) mice on C57BL/6 background and their controls were subjected to IRI. In each group, blood and kidney samples were harvested. Renal function was evaluated by serum creatinine and renal morphometric analyses. Gene expression of IL-6 and HO-1 were also investigated by Q-PCR. IFN-gamma KO animals presented the highest impairment in renal function compared to controls. Conversely, IL-12 KO animals were absolutely protected and, in a lesser extent, IFN-gamma/IL-12 KO double knockout was also protected from IRI. Gene expression analyses showed higher expression of HO-1, a cytoprotective gene, and IL-6, a pro-inflammatory cytokine, in IFN-gamma deficient animals subjected to IRI. Our results confirm that Th1 related cytokines such as IL-12 and IFN-gamma are critically involved in renal ischemia and reperfusion injury. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Transforming growth factor beta (TGF-beta) plays a role both in the induction of Treg and in the differentiation of the IL-17-secreting T cells (Th17) which drive inflammation in experimental autoimmune encephalomyelitis (EAE). We investigated the role that thrombospondin-1 (TSP-1) dependent activation of TGF-beta played in the generation of an encephalitic Th17 response in EAE. Upon immunization with myelin oligodendrocyte glycoprotein peptide (MOG(35-55)), TSP-1 deficient (TSP-1(null)) mice and MOG(35-55) TCR transgenic mice that lack of TSP-1 (2D2.TSP-1(null)) exhibited an attenuated form of EAE, and secreted lower levels of IL-17. Adoptive transfer of in vitro-activated 2D2.TSP-1(null) T cells induced a milder form of EAE, independent of TSP-1 expression in the recipient mice. Furthermore, in vitro studies demonstrated that anti-CD3/anti-CD28 pre-activated CD4+ T cells transiently upregulated latent TGF-beta in a TSP-1 dependent way, and such activation of latent TGF-beta was required for the differentiation of Th17 cells. These results demonstrate that TSP-1 participates in the differentiation of Th17 cells through its ability to activate latent TGF-beta, and enhances the inflammatory response in EAE. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The mechanisms that govern the initial interaction between Paracoccidioides brasiliensis, a primary dimorphic fungal pathogen, and cells of the innate immunity need to be clarified. Our previous studies showed that Toll-like receptor 2 (TLR2) and TLR4 regulate the initial interaction of fungal cells with macrophages and the pattern of adaptive immunity that further develops. The aim of the present investigation was to assess the role of MyD88, an adaptor molecule used by TLRs to activate genes of the inflammatory response in pulmonary paracoccidioidomycosis. Studies were performed with normal and MyD88(-/-) C57BL/6 mice intratracheally infected with P. brasiliensis yeast cells. MyD88(-/-) macrophages displayed impaired interaction with fungal yeast cells and produced low levels of IL-12, MCP-1, and nitric oxide, thus allowing increased fungal growth. Compared with wild-type (WT) mice, MyD88(-/-) mice developed a more severe infection of the lungs and had marked dissemination of fungal cells to the liver and spleen. MyD88(-/-) mice presented low levels of Th1, Th2, and Th17 cytokines, suppressed lymphoproliferation, and impaired influx of inflammatory cells to the lungs, and this group of cells comprised lower numbers of neutrophils, activated macrophages, and T cells. Nonorganized, coalescent granulomas, which contained high numbers of fungal cells, characterized the severe lesions of MyD88(-/-) mice; the lesions replaced extensive areas of several organs. Therefore, MyD88(-/-) mice were unable to control fungal growth and showed a significantly decreased survival time. In conclusion, our findings demonstrate that MyD88 signaling is important in the activation of fungicidal mechanisms and the induction of protective innate and adaptive immune responses against P. brasiliensis.
Resumo:
Trypanosoma cruzi trypomastigotes continuously shed into the medium plasma membrane fragments sealed as vesicles enriched in glycoproteins of the gp85 and trans-sialidase (TS) superfamily and alpha-galactosyl-containing glycoconjugates. Injection of a vesicle fraction into BALB/c mice prior to T. cruzi infection led to 40% of deaths on the 16th day post-infection and 100% on day 20th whereas 20% of untreated animals survived for more than 30 clays. The vesicle-treated animals developed severe heart pathology, with intense inflammatory reaction and higher number of amastigote nests. Analysis of the inflammatory infiltrates 15 days after infection showed predominance of TCD4(+) lymphocytes and macrophages, but not of TCD8(+) cells, as well as a decrease of areas labeled with anti-iNOS antibodies as compared to the control. Higher levels of IL-4 and IL-10 mRNAs were found in the hearts and higher IL-10 and lower NO levels in splenocytes of vesicles pretreated animals. Treatment of mice with neutralizing anti-IL-10 or anti-IL-4 antibodies precluded the effects of pre-inoculation of membrane vesicles on infection. These results indicate that T. cruzi shed membrane components increase tissue parasitism and inflammation by stimulation of IL-4 and IL-10 synthesis and thus may play a central role in the pathogenesis of Chagas` disease acute phase. (c) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Levels of endothelins are particularly high in the lung, and there is evidence that these peptides are involved in asthma. Asthma is a chronic inflammatory disease associated with lymphocyte infiltration. In the present study, we used a murine model of asthma to investigate the role of endothelins in lymphocyte and eosinophil infiltration into the airway hyperreactivity and mucus secretion. Sensitized C57B1/6 mice were treated with endothelin ET(A) receptor antagonist (BQ123) or endothelin ET(B) receptor antagonist (BQ788) 30 min before an antigen aerosol challenge. After 24 h, dose response curves to methacholine were performed in isolated lungs, FACS analysis of lymphocytes and eosinophil counts were performed in bronchoalveolar lavage fluid and mucus index was determined by histopathology. In sensitized and antigen-challenged mice there is a marked increase in the T CD(4)(+), T CD(8)(+), B220(+), T gamma delta(+) and NK1.1(+) lymphocyte subsets. Treatment with BQ123 further increased these cell populations. The number of eosinophils, airway hyperreactivity and mucus were all reduced by BQ123 treatment. The BQ788 had no significant effect on the parameters analyzed. Treatment with BQ123 reduced the endothelin concentration in lung homogenates, suggesting that endothelins exert a positive feedback on their synthesis. We show here that in murine asthma the ET(A) receptor antagonist up-regulates lymphocyte infiltration and reduces eosinophils, hyperreactivity and mucus. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The mechanisms responsible for the generation and maintenance of immunological memory to Plasmodium are poorly understood and the reasons why protective immunity in humans is so difficult to achieve and rapidly lost remain a matter for debate. A possible explanation for the difficulty in building up an efficient immune response against this parasite is the massive T cell apoptosis resulting from exposure to high-dose parasite Ag. To determine the immunological mechanisms required for long-term protection against P. chabaudi malaria and the consequences of high and low acute phase parasite loads for acquisition of protective immunity, we performed a detailed analysis of T and B cell compartments over a period of 200 days following untreated and drug-treated infections in female C57BL/6 mice. By comparing several immunological parameters with the capacity to control a secondary parasite challenge, we concluded that loss of full protective immunity is not determined by acute phase parasite load nor by serum levels of specific IgG2a and IgG1. Abs, but appears to be a consequence of the progressive decline in memory T cell response to parasites, which occurs similarly in untreated and drug-treated mice with time after infection. Furthermore, by analyzing adoptive transfer experiments, we confirmed the major role of CD4(+) T cells for guaranteeing long-term full protection against P. chabaudi malaria. The Journal of Immunology, 2008, 181: 8344-8355.
Resumo:
Helminths and their products have a profound immunomodulatory effect upon the inductive and effector phases of inflammatory responses, including allergy. We have demonstrated that PAS-1, a protein isolated from Ascaris strum worms, has an inhibitory effect on lung allergic inflammation due to its ability to down-regulate eosinophilic inflammation, Th2 cytokine release and IgE antibody production. Here, we investigated the role of IL-12, IFN-gamma and IL-10 in the PAS-1-induced inhibitory mechanism using a murine model of asthma. Wild type C57BL/6, IL-12(-/-), IFN-gamma(-/-) and IL-10(-/-) mice were immunized with PAS-1 and/or OVA and challenged with the same antigens intranasally. The suppressive effect of PAS-I was demonstrated on the cellular influx into airways, with reduction of eosinophil number and eosinophil peroxidase activity in OVA + PAS-1-immunized wild type mice. This effect well correlated with a significant reduction in the levels of IL-4, IL-5, IL-13 and eotaxin in BAL fluid. Levels of IgE and IgG1 antibodies were also impaired in serum from these mice. The inhibitory activity of PAS-I was also observed in IL-12(-/-) mice, but not in IFN-gamma(-/-) and IL-10(-/-) animals. These data show that IFN-gamma and IL-10, but not IL-12, play an important role in the PAS-1 modulatory effect. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Mycoplasma arthritidis causes autoimmune arthritis in rodents. It produces a superantigen (MAM) that simultaneously activates antigen presenting cells and T cells inducing nitric oxide and cytokine release. Nitric oxide is a key inducer and regulator of the immune system activation. Here, we investigated nitric oxide and cytokine production and interactions of these molecules in MAM-stimulated co-cultures of macrophages (J774A.1 cell line) with spleen lymphocytes. We found that: a) MAM-induced nitric oxide, interferon-gamma, membrane-associated tumor necrosis factor and interleukin-2 production in co-cultures of macrophages with lymphocytes from BALB/c and C3H/HePas but not from C57B1/6 mice; b) production of nitric oxide was dependent on interferon-gamma whereas that of interferon-gamma was dependent on interleukin-2 and membrane-associated tumor necrosis factor; c) these cytokines up regulated MAM-induced nitric oxide production. Unraveling the mechanisms of cell activation induced by MAM might be helpful to design strategies to prevent immune system activation by superantigens and therefore in seeking amelioration of associated immunopathologies. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Introduction: Cytolethal distending toxin (CDT) is a DNA-targeting agent produced by certain pathogenic gram-negative bacteria such as the periodontopathogenic organism Aggregatibacter actinomycetemcomitans. CDT targets lymphocytes and other cells causing cell cycle arrest and apoptosis, impairing the host immune response and contributing to the persistence of infections caused by this microorganism. In this study we explored the effects of CDT on the innate immune response, by investigating how it affects production of nitric oxide (NO) by macrophages. Methods: Murine peritoneal macrophages were stimulated with Escherichia coli sonicates and NO production was measured in the presence or not of active CDT. Results: We observed that CDT promptly and significantly inhibited NO production by inducible nitric oxide synthase (iNOS) in a dose-dependent manner. This inhibition is directed towards interferon-gamma-dependent pathways and is not mediated by either interleukin-4 or interleukin-10. Conclusion: This mechanism may constitute an important aspect of the immunosuppression mediated by CDT and may have potential clinical implications in A. actinomycetemcomitans infections.
Resumo:
immunodeficiency (CVID), the most common symptomatic primary immunodeficiency in adulthood. Different authors report high prevalences of autoimmune diseases in CVID, and several mechanisms have been proposed to explain this apparent paradox. Genetic predisposition, under current surveillance, innate and adaptive immunity deficiencies leading to persistent/recurrent infections, variable degrees of immune dysregulation, and possible failure in central and peripheral mechanisms of tolerance induction or maintenance may all contribute to increased autoimmunity. Conclusions Data on the clinical/immunological profile of affected patients and treatment are available mostly concerning autoimmune cytopenias, the most common autoimmune diseases in CVID. Treatment is based on conventional alternatives, in association with short experience with new agents, including rituximab and infliximab. Benefits of early immunoglobulin substitutive treatment and hypothetical premature predictors of autoimmunity are discussed as potential improvements to CVID patients` follow-up.
Resumo:
Background. Periodontal diseases (PDs) are infectious diseases in which periodontopathogens trigger chronic inflammatory and immune responses that lead to tissue destruction. Recently, viruses have been implicated in the pathogenesis of PDs. Individuals infected with human T lymphotropic virus 1 (HTLV-1) present with abnormal oral health and a marked increased prevalence of periodontal disease. Methods. In this study, we investigated the patterns of periodontopathogen infection and local inflammatory immune markers in HTLV-1-seropositive individuals with chronic periodontitis (CP/HTLV-1 group) compared with HTLV-1 -seronegative individuals with chronic periodontitis (CP group) and periodontally healthy, HTLV-1 -seronegative individuals (control group). Results. Patients in the CP/HTLV-1 group had significantly higher values of bleeding on probing, mean probing depth, and attachment loss than patients in the CP group. The expression of tumor necrosis factor a and interleukin (IL) 4 was found to be similar in the CP and CP/HTLV-1 groups, whereas IL-12 and IL-17 levels trended toward a higher expression in the CP/HTLV-1 group. A significant increase was seen in the levels of IL-1 beta and interferon gamma in the CP/HTLV-1 group compared with the CP group, whereas expression of the regulatory T cell marker FOXp3 and IL-10 was significantly decreased in the lesions from the CP/HTLV-1 group. Interestingly, similar frequency and/or load of periodontopathogens (Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and Aggregatibacter actinomycetemcomitans) and frequency of viruses (herpes simplex virus 1, human cytomegalovirus, and Epstein-Barr virus) characteristically associated with PDs were found in the CP/HTLV and CP groups. Conclusions. HTLV-1 may play a critical role in the pathogenesis of periodontal disease through the deregulation of the local cytokine network, resulting in an exacerbated response against a standard periodontopathogen infection.