952 resultados para Symmetric cipher
Resumo:
Molecular dynamics investigation of model diatomic species confined to the alpha-cages of zeolite NaY is reported. The dependence of self-diffusivity on the bond length of the diatomic species has been investigated. Three different sets of runs have been carried out. In the first set, the two atoms of the diatomic molecule interact with the zeolite atoms with equal strength (example, O-2, the symmetric case). In the second and third sets which correspond to asymmetric cases, the two atoms of the diatomic molecule interact with unequal strengths (example, CO). The result for the symmetric case exhibits a well-defined maximum in self-diffusivity for an intermediate bond length. In contrast to this, the intermediate asymmetry leads to a less pronounced maximum. For the large asymmetric case, the maximum is completely absent. These findings are analyzed by computing a number of related properties. These results provide a direct confirmation at the microscopic level of the suggestion by Derouane that the supermobility observed experimentally by Kemball has its origin in the mutual cancellation of forces. The maximum in diffusivity from molecular dynamics is seen at the value predicted by the levitation effect. Further, these findings suggest a role for symmetry in the existence of a diffusivity maximum as a function of diameter of the diffusant often referred to as the levitation effect. The nature of the required symmetry for the existence of anomalous diffusivity is interaction symmetry which is different from that normally encountered in crystallography.
Resumo:
We study the boundedness of Toeplitz operators on Segal-Bargmann spaces in various contexts. Using Gutzmer's formula as the main tool we identify symbols for which the Toeplitz operators correspond to Fourier multipliers on the underlying groups. The spaces considered include Fock spaces, Hermite and twisted Bergman spaces and Segal-Bargmann spaces associated to Riemannian symmetric spaces of compact type.
Resumo:
We address the problem of designing codes for specific applications using deterministic annealing. Designing a block code over any finite dimensional space may be thought of as forming the corresponding number of clusters over the particular dimensional space. We have shown that the total distortion incurred in encoding a training set is related to the probability of correct reception over a symmetric channel. While conventional deterministic annealing make use of the Euclidean squared error distance measure, we have developed an algorithm that can be used for clustering with Hamming distance as the distance measure, which is required in the error correcting, scenario.
Resumo:
A 6 X 6 transfer matrix is presented to evaluate the response of a multi-layer infinite plate to a given two-dimensional pressure excitation on one of its faces or, alternatively, to evaluate the acoustic pressure distribution excited by the normal velocity components of the radiating surfaces. It is shown that the present transfer matrix is a general case embodying the transfer matrices of normal excitation and one-dimensional pressure excitation due to an oblique incident wave. It is also shown that the present transfer matrix obeys the necessary checks to categorize the physically symmetric multi-layer plate as dynamically symmetric. Expressions are derived to obtain the wave propagation parameters, such as the transmission, absorption and reflection coefficients, in terms of the elements of the transfer matrix presented. Numerical results for transmission loss and reflection coefficients of a two-layer configuration are presented to illustrate the effect of angles of incidence, layer characteristics and ambient media.
Resumo:
A symmetric cascade of selective pulses applied on connected transitions leads to the excitation of a selected multiple-quantum coherence by a well-defined angle. This cascade selectively operates on the subspace of the multiple-quantum coherence and acts as a generator of rotation selectively on the multiple-quantum subspace. Single-transition operator algebra has been used to explain these experiments. Experiments have been performed on two- and three-spin systems. It is shown that such experiments can be utilized to measure the relaxation times of selected multiple-quantum coherences or of a specifically prepared initial longitudinal state of the spin system.
Resumo:
We present a complete solution to the problem of coherent-mode decomposition of the most general anisotropic Gaussian Schell-model (AGSM) beams, which constitute a ten-parameter family. Our approach is based on symmetry considerations. Concepts and techniques familiar from the context of quantum mechanics in the two-dimensional plane are used to exploit the Sp(4, R) dynamical symmetry underlying the AGSM problem. We take advantage of the fact that the symplectic group of first-order optical system acts unitarily through the metaplectic operators on the Hilbert space of wave amplitudes over the transverse plane, and, using the Iwasawa decomposition for the metaplectic operator and the classic theorem of Williamson on the normal forms of positive definite symmetric matrices under linear canonical transformations, we demonstrate the unitary equivalence of the AGSM problem to a separable problem earlier studied by Li and Wolf [Opt. Lett. 7, 256 (1982)] and Gori and Guattari [Opt. Commun. 48, 7 (1983)]. This conn ction enables one to write down, almost by inspection, the coherent-mode decomposition of the general AGSM beam. A universal feature of the eigenvalue spectrum of the AGSM family is noted.
Resumo:
The planar rocking of a prismatic rectangular rigid block about either of its corners is considered. The problem of homoclinic intersections of the stable and unstable manifolds of the perturbed separatrix is addressed to and the corresponding Melnikov functions are derived. Inclusion of the vertical forcing in the Hamiltonian permits the construction of a three-dimensional separatrix. The corresponding modified Melnikov function of Wiggins for homoclinic intersections is derived. Further, the 1-period symmetric orbits are predicted analytically using the method of averaging and compared with the simulation results. The stability boundary for such orbits is also established.
Resumo:
We use Monte Carlo simulations to obtain thermodynamic functions and correlation functions in a lattice model we propose for sponge phases. We demonstrate that the surface-density correlation function dominates the scattering only along the symmetric-sponge (SS) to asymmetric-sponge (AS) phase boundary but not the boundary between the sponge-with-free-edges (SFE) and symmetric-sponge phases. At this second thermodynamic transition the scattering is dominated instead by an edge-density (or seam-density) correlation function. This prediction provides an unambiguous diagnostic for experiments in search of the SS-SFE transition.
Resumo:
The modification of the axisymmetric viscous flow due to relative rotation of the disk or fluid by a translation of the boundary is studied. The fluid is taken to be compressible, and the relative rotation and translation velocity of the disk or fluid are time-dependent. The nonlinear partial differential equations governing the motion are solved numerically using an implicit finite difference scheme and Newton's linearisation technique. Numerical solutions are obtained at various non-dimensional times and disk temperatures. The non-symmetric part of the flow (secondary flow) describing the translation effect generates a velocity field at each plane parallel to the disk. The cartesian components of velocity due to secondary flow exhibit oscillations when the motion is due to rotation of the fluid on a translating disk. Increase in translation velocity produces an increment in the radial skin friction but reduces the tangential skin friction.
Resumo:
Nonlinear finite element analysis is used for the estimation of damage due to low-velocity impact loading of laminated composite circular plates. The impact loading is treated as an equivalent static loading by assuming the impactor to be spherical and the contact to obey Hertzian law. The stresses in the laminate are calculated using a 48 d.o.f. laminated composite sector element. Subsequently, the Tsai-Wu criterion is used to detect the zones of failure and the maximum stress criterion is used to identify the mode of failure. Then the material properties of the laminate are degraded in the failed regions. The stress analysis is performed again using the degraded properties of the plies. The iterative process is repeated until no more failure is detected in the laminate. The problem of a typical T300/N5208 composite [45 degrees/0 degrees/-45 degrees/90 degrees](s) circular plate being impacted by a spherical impactor is solved and the results are compared with experimental and analytical results available in the literature. The method proposed and the computer code developed can handle symmetric, as well as unsymmetric, laminates. It can be easily extended to cover the impact of composite rectangular plates, shell panels and shells.
Resumo:
We calculate analytically the average number of fixed points in the Hopfield model of associative memory when a random antisymmetric part is added to the otherwise symmetric synaptic matrix. Addition of the antisymmetric part causes an exponential decrease in the total number of fixed points. If the relative strength of the antisymmetric component is small, then its presence does not cause any substantial degradation of the quality of retrieval when the memory loading level is low. We also present results of numerical simulations which provide qualitative (as well as quantitative for some aspects) confirmation of the predictions of the analytic study. Our numerical results suggest that the analytic calculation of the average number of fixed points yields the correct value for the typical number of fixed points.
Resumo:
in this short note, we determine precisely which operators have the property that their (full, symmetric or antisymmetric) second quantisation is an operator which is bounded or belongs to one of the various Schatten ideals; we also note that in 'the interior' of the natural domain, the second quantisation is a continuous map.
Resumo:
Reactions of [Rh(COD)Cl](2) with the ligand RN(PX(2))(2) (1: R=C6H5; X=OC6H5) give mono- or disubstituted complexes of the type [Rh-2(COD)Cl-2{eta(2)-C6H5N(P(OC6H5)(2))(2)}-] or [RhCl{eta(2)-C6H5N(P(OC6H5)(2))(2)}](2), depending on the reaction conditions. Reaction of 1 with [Rh(CO)(2)Cl](2) gives the symmetric binuclear complex, [Rh(CO)Cl{mu-C6H5N(P(OC6H5)(2))(2)}], whereas the same reaction with 2 (R=CH3; X=OC6H5) leads to the formation of an asymmetric complex of the type [Rh(CO)(mu-CO)Cl{mu-CH3N(P(OC6H5)(2))(2)}] containing both terminal and bridging CO groups. Interestingly the reaction of 3 (R=C6H5, X = OC6H4Br-p) with either [Rh(COD)Cl](2) or [Rh(CO)(2)Cl](2) leads only to the formation of the chlorine bridged binuclear complex, [RhCl{eta(2)-C6H5N(P(OC6H4Br-p)(2))(2)}](2). The structural elucidation of the complexes was carried out by elemental analyses, IR and P-31 NMR spectroscopic data.
Resumo:
A symmetrizer of a nonsymmetric matrix A is the symmetric matrix X that satisfies the equation XA = A(t)X, where t indicates the transpose. A symmetrizer is useful in converting a nonsymmetric eigenvalue problem into a symmetric one which is relatively easy to solve and finds applications in stability problems in control theory and in the study of general matrices. Three designs based on VLSI parallel processor arrays are presented to compute a symmetrizer of a lower Hessenberg matrix. Their scope is discussed. The first one is the Leiserson systolic design while the remaining two, viz., the double pipe design and the fitted diagonal design are the derived versions of the first design with improved performance.
Resumo:
Abstract: Activities in the spinel solid solution FexMg1-xAl2O4 saturated with alpha-Al2O3 have been measured for the compositional range 0 < X < 1 between 1100 and 1350 K using a bielectrolyte solid-state galvanic cell, which may be represented as Pt, Fe + FexMg1-xAl2O4 + alpha-Al2O3//(Y2O3)ThO2/ (CaO)ZrO2//Fe + FeAl2O4 + alpha-Al2O3, Pt Activities of ferrous and magnesium aluminates exhibit small negative deviations from Raoult's law. The excess free energy of mixing of the solid solution is a symmetric function of composition and is independent of temperature: Delta G(E) = -1990 X(1 - X J/mol. Theoretical analysis of cation distribution in spinel solid solution also suggests mild negative deviations from ideality. The lattice parameter varies linearly with composition in samples quenched from 1300 K. Phase relations in the FeO-MgO-Al2O3 system at 1300 K are deduced from the results of this study and auxiliary thermodynamic data from the literature. The calculation demonstrates the influence of intracrystalline ion exchange equilibrium between nonequivalent crystallographic sites in the spinel structure on intercrystalline ion exchange equilibrium between the monoxide and spinel solid solutions (tie-lines). The composition dependence of oxygen partial pressure at 1300 K is evaluated for three-phase equilibria involving the solid solutions Fe + FexMg1-xAl2O4 + alpha-Al2O3 and Fe + FeyMg1-yO + FexMg1-xAl2O4. Dependence of X, denoting the composition of the spinel solid solution, on parameter Y, characterizing the composition of the monoxide solid solution with rock salt structure, in phase fields involving the two solid solutions is elucidated. The tie-lines are slightly skewed toward the MgAl2O4 corner.