1000 resultados para Stynchyn van der Krone.
Resumo:
Although body ownership-i.e. the feeling that our bodies belong to us-modulates activity within the primary somatosensory cortex (S1), it is still unknown whether this modulation occurs within a somatotopically defined portion of S1. We induced an illusory feeling of ownership for another person's finger by asking participants to hold their palm against another person's palm and to stroke the two joined index fingers with the index and thumb of their other hand. This illusion (numbness illusion) does not occur if the stroking is performed asynchronously or by the other person. We combined this somatosensory paradigm with ultra-high field functional magnetic resonance imaging finger mapping to study whether illusory body ownership modulates activity within different finger-specific areas of S1. The results revealed that the numbness illusion is associated with activity in Brodmann area (BA) 1 within the representation of the finger stroking the other person's finger and in BA 2 contralateral to the stroked finger. These results show that changes in bodily experience modulate the activity within certain subregions of S1, with a different finger-topographical selectivity between the representations of the stroking and of the stroked hand, and reveal that the high degree of somatosensory specialization in S1 extends to bodily self-consciousness.
Resumo:
Expression control in synthetic genetic circuitry, for example, for construction of sensitive biosensors, is hampered by the lack of DNA parts that maintain ultralow background yet achieve high output upon signal integration by the cells. Here, we demonstrate how placement of auxiliary transcription factor binding sites within a regulatable promoter context can yield an important gain in signal-to-noise output ratios from prokaryotic biosensor circuits. As a proof of principle, we use the arsenite-responsive ArsR repressor protein from Escherichia coli and its cognate operator. Additional ArsR operators placed downstream of its target promoter can act as a transcription roadblock in a distance-dependent manner and reduce background expression of downstream-placed reporter genes. We show that the transcription roadblock functions both in cognate and heterologous promoter contexts. Secondary ArsR operators placed upstream of their promoter can also improve signal-to-noise output while maintaining effector dependency. Importantly, background control can be released through the addition of micromolar concentrations of arsenite. The ArsR-operator system thus provides a flexible system for additional gene expression control, which, given the extreme sensitivity to micrograms per liter effector concentrations, could be applicable in more general contexts.
Resumo:
The aim of this chapter is to provide an understanding of retirement adjustment by specifically focusing on meaning in life for retirees and meaningful work for older workers who are close to retirement. After a first outline of global issues of aging and work, we approach transition to retirement from the standpoint of sustainable careers within its main dimensions of continuity and importance of personal agency. Next, we review and synthesize literature on meaningful work and meaning in life, distinguishing three levels that constitute meaningful work and five dimensions of meaning in life. To illustrate our points, we present quotations from semi-structured interviews realized with Swiss older workers who were going to retire within a few months. Then, we describe ways to promote meaningful work for older workers and how to create a new meaning or to pursue a previous meaning as a retiree. Finally, we suggest ways individuals, organizations, and career counselors can facilitate a meaningful transition to retirement.
Resumo:
Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.
Resumo:
Elevated concentrations of albumin in the urine, albuminuria, are a hallmark of diabetic kidney disease and are associated with an increased risk for end-stage renal disease and cardiovascular events. To gain insight into the pathophysiological mechanisms underlying albuminuria, we conducted meta-analyses of genome-wide association studies and independent replication in up to 5,825 individuals of European ancestry with diabetes and up to 46,061 without diabetes, followed by functional studies. Known associations of variants in CUBN, encoding cubilin, with the urinary albumin-to-creatinine ratio (UACR) were confirmed in the overall sample (P = 2.4 × 10(-10)). Gene-by-diabetes interactions were detected and confirmed for variants in HS6ST1 and near RAB38/CTSC. Single nucleotide polymorphisms at these loci demonstrated a genetic effect on UACR in individuals with but not without diabetes. The change in the average UACR per minor allele was 21% for HS6ST1 (P = 6.3 × 10(-7)) and 13% for RAB38/CTSC (P = 5.8 × 10(-7)). Experiments using streptozotocin-induced diabetic Rab38 knockout and control rats showed higher urinary albumin concentrations and reduced amounts of megalin and cubilin at the proximal tubule cell surface in Rab38 knockout versus control rats. Relative expression of RAB38 was higher in tubuli of patients with diabetic kidney disease compared with control subjects. The loci identified here confirm known pathways and highlight novel pathways influencing albuminuria.
Resumo:
INTRODUCTION: There is now solid evidence for a relation between adverse life events (ALE) and psychotic symptoms in patients with psychosis and in the general population. A recent study has shown that this relation may be partially mediated by stress sensitivity, suggesting the influence of other factors. The aim of this study was to assess the mediation effect of emotion regulation strategies and stress sensitivity in the relation between ALE and attenuated positive psychotic symptoms (APPS) in the general population. METHODS: Hundred and twelve healthy volunteers were evaluated with measures of APPS, emotion regulation strategies, ALE and stress sensitivity. RESULTS: Results demonstrated that the relation between ALE, hallucination and delusion proneness was completely mediated by maladaptive emotion regulation strategies, but not by stress sensitivity. However, in addition to maladaptive emotion regulation strategies, stress sensitivity demonstrated a mediation effect between ALE and attenuated positive psychotic positive symptoms when positive psychotic symptoms were grouped together. CONCLUSIONS: There are probably several possible trajectories leading to the formation of positive psychotic symptoms and the results of the present study reveal that one such trajectory may involve the maladaptive regulation of negative emotions alongside a certain general vulnerability after experiencing ALE.
Resumo:
Resistance to semi-dry environments has been considered a crucial trait for superior growth and survival of strains used for bioaugmentation in contaminated soils. In order to compare water stress programmes, we analyse differential gene expression among three phylogenetically different strains capable of aromatic compound degradation: Arthrobacter chlorophenolicus A6, Sphingomonas wittichii RW1 and Pseudomonas veronii 1YdBTEX2. Standardized laboratory-induced water stress was imposed by shock exposure of liquid cultures to water potential decrease, induced either by addition of solutes (NaCl, solute stress) or by addition of polyethylene glycol (matric stress), both at absolute similar stress magnitudes and at those causing approximately similar decrease of growth rates. Genome-wide differential gene expression was recorded by micro-array hybridizations. Growth of P. veronii 1YdBTEX2 was the most sensitive to water potential decrease, followed by S. wittichii RW1 and A. chlorophenolicus A6. The number of genes differentially expressed under decreasing water potential was lowest for A. chlorophenolicus A6, increasing with increasing magnitude of the stress, followed by S. wittichii RW1 and P. veronii 1YdBTEX2. Gene inspection and gene ontology analysis under stress conditions causing similar growth rate reduction indicated that common reactions among the three strains included diminished expression of flagellar motility and increased expression of compatible solutes (which were strain-specific). Furthermore, a set of common genes with ill-defined function was found between all strains, including ABC transporters and aldehyde dehydrogenases, which may constitute a core conserved response to water stress. The data further suggest that stronger reduction of growth rate of P. veronii 1YdBTEX2 under water stress may be an indirect result of the response demanding heavy NADPH investment, rather than the presence or absence of a suitable stress defence mechanism per se.
Resumo:
The electrochemical synthesis of a ternary compound obtained by the intercalation of hydrated hexilaminium cations into the layered compound 1T-TiS2 is reported. Two different compounds were detected by cyclovoltammetry and studied by X-ray diffractometry. Models showing the steric arrangement of the hydrated hexilaminium cations into the Van der Waals gaps were proposed.
Resumo:
In the present work we present geometric models of the most studied MoO3 surfaces, which were obtained using the DTMM 2.0 Molecular Modeller software. MoO3 has an orthorhombic layered structure, with each layer comprised of two interleaved planes of MoO6 octahedral. These layers are parallel to the (010) crystal plane and only oxygen ions are exposed on their surfaces. This situation results in weak van der Waals bonding between layers and in a relatively inert surface. In our approach to surface geometric structure we consider "ideal" crystal surface, in which the bulk atomic arrangement is maintained. These surfaces were generated by imaginary cleavage along appropriate planes in the bulk crystal structure.
Resumo:
Certain biopolymers are capable of forming physically cross-linked gels in aqueous medium, stabilized by forces such as Coulombic, charge transfer, hydrogen bonding, dipole-dipole, van der Waals, and hydrophobic interactions. The mathematical description of these physical networks are difficult, but should contribute to a better understanding of the gelling process. The Clark and Ross-Murphy model was applied to experimental data for agarose-guar gum mixed systems, in which only agarose is the gelling polysaccharide. A computational routine based on the statistical maximum likehood principle was employed to estimate the f, K and a characteristic parameters. Statistical t-test and F-test were used to analyse the set of parameters.
Resumo:
Living bacteria or yeast cells are frequently used as bioreporters for the detection of specific chemical analytes or conditions of sample toxicity. In particular, bacteria or yeast equipped with synthetic gene circuitry that allows the production of a reliable non-cognate signal (e.g., fluorescent protein or bioluminescence) in response to a defined target make robust and flexible analytical platforms. We report here how bacterial cells expressing a fluorescence reporter ("bactosensors"), which are mostly used for batch sample analysis, can be deployed for automated semi-continuous target analysis in a single concise biochip. Escherichia coli-based bactosensor cells were continuously grown in a 13 or 50 nanoliter-volume reactor on a two-layered polydimethylsiloxane-on-glass microfluidic chip. Physiologically active cells were directed from the nl-reactor to a dedicated sample exposure area, where they were concentrated and reacted in 40 minutes with the target chemical by localized emission of the fluorescent reporter signal. We demonstrate the functioning of the bactosensor-chip by the automated detection of 50 μgarsenite-As l(-1) in water on consecutive days and after a one-week constant operation. Best induction of the bactosensors of 6-9-fold to 50 μg l(-1) was found at an apparent dilution rate of 0.12 h(-1) in the 50 nl microreactor. The bactosensor chip principle could be widely applicable to construct automated monitoring devices for a variety of targets in different environments.
Resumo:
Marine environments are frequently exposed to oil spills as a result of transportation, oil drilling or fuel usage. Whereas large oil spills and their effects have been widely documented, more common and recurrent small spills typically escape attention. To fill this important gap in the assessment of oil-spill effects, we performed two independent supervised full sea releases of 5 m(3) of crude oil, complemented by on-board mesocosm studies and sampling of accidentally encountered slicks. Using rapid on-board biological assays, we detect high bioavailability and toxicity of dissolved and dispersed oil within 24 h after the spills, occurring fairly deep (8 m) below the slicks. Selective decline of marine plankton is observed, equally relevant for early stages of larger spills. Our results demonstrate that, contrary to common thinking, even small spills have immediate adverse biological effects and their recurrent nature is likely to affect marine ecosystem functioning.
Resumo:
C11H11N3O4 , Mr = 249.23, triclinic, , a = 5.453(1), b = 22.873(5), c = 4.893(1) Å, a = 94.47(3), b = 96.36(3), g = 86.27(3)º, V = 603.7(8)ų,Z = 2, Dx = 1.371 Mg/m-3,l(Cu Ka1) = 1.54178Å, m = 0.86mm-1, room temperature. The crystal structure of N-isopropyl-2-cyano-3(5'-nitrofuryl) - acrylamide has been determined by Direct Methods and refined to R = 0.086 for 797 observed reflections. The molecules in the crystal are packed at normal van der Waals forces and by an hydrogen bond between N1-H1...02i (N1...02i: 2.910(1)Å), with i=x,y,z+1).