866 resultados para Structure-based model
Resumo:
Time-averaged discharge rates (TADR) were calculated for five lava flows at Pacaya Volcano (Guatemala), using an adapted version of a previously developed satellite-based model. Imagery acquired during periods of effusive activity between the years 2000 and 2010 were obtained from two sensors of differing temporal and spatial resolutions; the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Geostationary Operational Environmental Satellites (GOES) Imager. A total of 2873 MODIS and 2642 GOES images were searched manually for volcanic “hot spots”. It was found that MODIS imagery, with superior spatial resolution, produced better results than GOES imagery, so only MODIS data were used for quantitative analyses. Spectral radiances were transformed into TADR via two methods; first, by best-fitting some of the parameters (i.e. density, vesicularity, crystal content, temperature change) of the TADR estimation model to match flow volumes previously estimated from ground surveys and aerial photographs, and second by measuring those parameters from lava samples to make independent estimates. A relatively stable relationship was defined using the second method, which suggests the possibility of estimating lava discharge rates in near-real-time during future volcanic crises at Pacaya.
Resumo:
Large Power transformers, an aging and vulnerable part of our energy infrastructure, are at choke points in the grid and are key to reliability and security. Damage or destruction due to vandalism, misoperation, or other unexpected events is of great concern, given replacement costs upward of $2M and lead time of 12 months. Transient overvoltages can cause great damage and there is much interest in improving computer simulation models to correctly predict and avoid the consequences. EMTP (the Electromagnetic Transients Program) has been developed for computer simulation of power system transients. Component models for most equipment have been developed and benchmarked. Power transformers would appear to be simple. However, due to their nonlinear and frequency-dependent behaviors, they can be one of the most complex system components to model. It is imperative that the applied models be appropriate for the range of frequencies and excitation levels that the system experiences. Thus, transformer modeling is not a mature field and newer improved models must be made available. In this work, improved topologically-correct duality-based models are developed for three-phase autotransformers having five-legged, three-legged, and shell-form cores. The main problem in the implementation of detailed models is the lack of complete and reliable data, as no international standard suggests how to measure and calculate parameters. Therefore, parameter estimation methods are developed here to determine the parameters of a given model in cases where available information is incomplete. The transformer nameplate data is required and relative physical dimensions of the core are estimated. The models include a separate representation of each segment of the core, including hysteresis of the core, λ-i saturation characteristic, capacitive effects, and frequency dependency of winding resistance and core loss. Steady-state excitation, and de-energization and re-energization transients are simulated and compared with an earlier-developed BCTRAN-based model. Black start energization cases are also simulated as a means of model evaluation and compared with actual event records. The simulated results using the model developed here are reasonable and more correct than those of the BCTRAN-based model. Simulation accuracy is dependent on the accuracy of the equipment model and its parameters. This work is significant in that it advances existing parameter estimation methods in cases where the available data and measurements are incomplete. The accuracy of EMTP simulation for power systems including three-phase autotransformers is thus enhanced. Theoretical results obtained from this work provide a sound foundation for development of transformer parameter estimation methods using engineering optimization. In addition, it should be possible to refine which information and measurement data are necessary for complete duality-based transformer models. To further refine and develop the models and transformer parameter estimation methods developed here, iterative full-scale laboratory tests using high-voltage and high-power three-phase transformer would be helpful.
Resumo:
This document will demonstrate the methodology used to create an energy and conductance based model for power electronic converters. The work is intended to be a replacement for voltage and current based models which have limited applicability to the network nodal equations. Using conductance-based modeling allows direct application of load differential equations to the bus admittance matrix (Y-bus) with a unified approach. When applied directly to the Y-bus, the system becomes much easier to simulate since the state variables do not need to be transformed. The proposed transformation applies to loads, sources, and energy storage systems and is useful for DC microgrids. Transformed state models of a complete microgrid are compared to experimental results and show the models accurately reflect the system dynamic behavior.
Resumo:
In my Ph.D research, a wet chemistry-based organic solution phase reduction method was developed, and was successfully applied in the preparation of a series of advanced electro-catalysts, including 0-dimensional (0-D) Pt, Pd, Au, and Pd-Ni nanoparticles (NPs), 1-D Pt-Fe nanowires (NWs) and 2-D Pd-Fe nanoleaves (NLs), with controlled size, shape, and morphology. These nanostructured catalysts have demonstrated unique electro-catalytic functions towards electricity production and biorenewable alcohol conversion. The molecular oxygen reduction reaction (ORR) is a long-standing scientific issue for fuel cells due to its sluggish kinetics and the poor catalyst durability. The activity and durability of an electro-catalyst is strongly related with its composition and structure. Based on this point, Pt-Fe NWs with a diameter of 2 - 3 nm were accurately prepared. They have demonstrated a high durability in sulfuric acid due to its 1-D structure, as well as a high ORR activity attributed to its tuned electronic structure. By substituting Pt with Pd using a similar synthesis route, Pd-Fe NLs were prepared and demonstrated a higher ORR activity than Pt and Pd NPs catalysts in the alkaline electrolyte. Recently, biomass-derived alcohols have attracted enormous attention as promising fuels (to replace H2) for low-temperature fuel cells. From this point of view, Pd-Ni NPs were prepared and demonstrated a high electro-catalytic activity towards ethanol oxidation. Comparing to ethanol, the biodiesel waste glycerol is more promising due to its low price and high reactivity. Glycerol (and crude glycerol) was successfully applied as the fuel in an Au-anode anion-exchange membrane fuel cell (AEMFC). By replacing Au with a more active Pt catalyst, simultaneous generation of both high power-density electricity and value-added chemicals (glycerate, tartronate, and mesoxalate) from glycerol was achieved in an AEMFC. To investigate the production of valuable chemicals from glycerol electro-oxidation, two anion-exchange membrane electro-catalytic reactors were designed. The research shows that the electro-oxidation product distribution is strongly dependent on the anode applied potential. Reaction pathways for the electro-oxidation of glycerol on Au/C catalyst have been elucidated: continuous oxidation of OH groups (to produce tartronate and mesoxalate) is predominant at lower potentials, while C-C cleavage (to produce glycolate) is the dominant reaction path at higher potentials.
Resumo:
A novel solution to the long standing issue of chip entanglement and breakage in metal cutting is presented in this dissertation. Through this work, an attempt is made to achieve universal chip control in machining by using chip guidance and subsequent breakage by backward bending (tensile loading of the chip's rough top surface) to effectively control long continuous chips into small segments. One big limitation of using chip breaker geometries in disposable carbide inserts is that the application range is limited to a narrow band depending on cutting conditions. Even within a recommended operating range, chip breakers do not function effectively as designed due to the inherent variations of the cutting process. Moreover, for a particular process, matching the chip breaker geometry with the right cutting conditions to achieve effective chip control is a very iterative process. The existence of a large variety of proprietary chip breaker designs further exacerbates the problem of easily implementing a robust and comprehensive chip control technique. To address the need for a robust and universal chip control technique, a new method is proposed in this work. By using a single tool top form geometry coupled with a tooling system for inducing chip breaking by backward bending, the proposed method achieves comprehensive chip control over a wide range of cutting conditions. A geometry based model is developed to predict a variable edge inclination angle that guides the chip flow to a predetermined target location. Chip kinematics for the new tool geometry is examined via photographic evidence from experimental cutting trials. Both qualitative and quantitative methods are used to characterize the chip kinematics. Results from the chip characterization studies indicate that the chip flow and final form show a remarkable consistency across multiple levels of workpiece and tool configurations as well as cutting conditions. A new tooling system is then designed to comprehensively break the chip by backward bending. Test results with the new tooling system prove that by utilizing the chip guidance and backward bending mechanism, long continuous chips can be more consistently broken into smaller segments that are generally deemed acceptable or good chips. It is found that the proposed tool can be applied effectively over a wider range of cutting conditions than present chip breakers thus taking possibly the first step towards achieving universal chip control in machining.
Resumo:
Ureides are compounds, which essentially incorporate urea as a substructural component either in open or cyclic form. Ureido derivatives are one of the oldest classes of bioactives, widely used as antiinfective agents. Several of these compounds, including aminoquinuride, aminocarbalide, imidurea, cloflucarban, nitrofurazone, urosulfan, viomycin are used in clinical situations. One of the ureides, the triclocarban is compulsorily used as antibacterial agent in cleansing and disinfecting solutions in hospital, household, cosmetics, toys, textile and plastics. It disables the activity of ENR, an enzyme vital for building the cell wall of the bacteria and fungus. Besides, the ureido-penicillins in clinical use there have been several ureido-lactam derivatives which have been reported to exhibit significant antibacterial activity. A urea containing dipeptide TAN-1057A isolated from Flexibacter spp. has potent bioactivity against MRSA. The metal complexes of sulphonyl ureido derivatives are effective antifungal agents by inhibiting the activity of phosphomannose isomerase, a key enzyme in the biosynthesis of yeast cell walls. There have been number of ureides including the cyclic ureas which are potent HIV protease inhibitors and display significant anti-HIV activity. The urea derivative, merimepodip that has been derived using structure based design, is potent inhibitor of IMPDH and is active against Hepatitis-C infection. This review will primarily focus on the significant work reported for this class of compounds including design, synthesis and biological activity.
Resumo:
Most accounts of child language acquisition use as analytic tools adult-like syntactic categories and schemas (formal grammars) with little concern for whether they are psychologically real for young children. Recent research has demonstrated, however, that children do not operate initially with such abstract linguistic entities, but instead operate on the basis of concrete, item-based constructions. Children construct more abstract linguistic constructions only gradually – on the basis of linguistic experience in which frequency plays a key role – and they constrain these constructions to their appropriate ranges of use only gradually as well – again on the basis of linguistic experience in which frequency plays a key role. The best account of first language acquisition is provided by a construction-based, usage-based model in which children process the language they experience in discourse interactions with other persons, relying explicitly and exclusively on social and cognitive skills that children of this age are known to possess.
Resumo:
Following European legislative initiatives in the field of copyright limitations and exceptions, policy flexibilities formerly available to mem- ber states has been greatly diminished. The law in this area is increasingly incapable of accommodating any expansion in the scope of freely permitted acts, even where such expansion may be an appropriate response to changes in social and technological conditions. In this article, the causes of this problem are briefly canvassed and a number of potential solutions are noted. It is suggested that one such solution – the adoption of an open, factor-based model similar to s 107 of the United States’ Copyright Act – has not received the serious attention it deserves. The fair use paradigm has generally been dismissed as excessively unpredictable, contrary to international law and/or culturally alien. Drawing on recent fair use scholarship, it is argued here that these disadvantages are over-stated and that the potential for the development of a European fair use model merits investigation.
Resumo:
In diesem Beitrag wird eine dezentral aufgebaute und auf Selbstorganisation basierende Methodik zur Grobplanung von Intralogistiksystemen thematisiert. Diese Methodik sieht eine Kombination des Wissenschaftsgebiets der Agentensysteme aus der Informatik mit der Materialflussplanung vor. Dieser Artikel leistet somit einen Beitrag für die Entwicklung eines intelligenten, rechnergestützten Assistenzsystems zur Planung intralogistischer Systeme.
Resumo:
Plant cell expansion is controlled by a fine-tuned balance between intracellular turgor pressure, cell wall loosening and cell wall biosynthesis. To understand these processes, it is important to gain in-depth knowledge of cell wall mechanics. Pollen tubes are tip-growing cells that provide an ideal system to study mechanical properties at the single cell level. With the available approaches it was not easy to measure important mechanical parameters of pollen tubes, such as the elasticity of the cell wall. We used a cellular force microscope (CFM) to measure the apparent stiffness of lily pollen tubes. In combination with a mechanical model based on the finite element method (FEM), this allowed us to calculate turgor pressure and cell wall elasticity, which we found to be around 0.3 MPa and 20–90 MPa, respectively. Furthermore, and in contrast to previous reports, we showed that the difference in stiffness between the pollen tube tip and the shank can be explained solely by the geometry of the pollen tube. CFM, in combination with an FEM-based model, provides a powerful method to evaluate important mechanical parameters of single, growing cells. Our findings indicate that the cell wall of growing pollen tubes has mechanical properties similar to rubber. This suggests that a fully turgid pollen tube is a relatively stiff, yet flexible cell that can react very quickly to obstacles or attractants by adjusting the direction of growth on its way through the female transmitting tissue.
Resumo:
This brief review of the human Na/H exchanger gene family introduces a new classification with three subgroups to the SLC9 gene family. Progress in the structure and function of this gene family is reviewed with structure based on homology to the bacterial Na/H exchanger NhaA. Human diseases which result from genetic abnormalities of the SLC9 family are discussed although the exact role of these transporters in causing any disease is not established, other than poorly functioning NHE3 in congenital Na diarrhea.
Resumo:
Für das wirtschaftliche Wachstum und die Innovationskraft einer Volkswirtschaft sind junge Unternehmen von herausragender Bedeutung. Ein wichtiges Ziel von Politik und Wirtschaft muss folglich die Sensibilisierung und Förderung potenzieller Gründer sein. Die vorliegende Untersuchung geht der Frage nach, ob eine universitäre Gründungsausbildung die Gründungsabsicht von Studierenden positiv beeinflussen kann. Aufbauend auf dem intentionsbasierten Modell von Krueger /Carsrud (1993) wurden im Rahmen einer Befragung an der TU Dortmund 111 Studierende der Wirtschaftswissenschaften zu ihren Gründungsabsichten befragt. Es zeigte sich, dass die Gründungsabsicht durch den Besuch von Veranstaltungen zum Gründungsmanagement deutlich gesteigert werden kann. Für die deutsche Wirtschafts- und Bildungspolitik ergibt sich aus den Ergebnissen die Handlungsempfehlung, die universitäre Gründungsausbildung auszubauen und intensiv zu fördern.
Resumo:
Context. The abundance of deuterium in the interstellar gas in front of the Sun gives insight into the processes of filtration of neutral interstellar species through the heliospheric interface and potentially into the chemical evolution of the Galactic gas. Aims: We investigate the possibility of detection of neutral interstellar deuterium at 1 AU from the Sun by direct sampling by the Interstellar Boundary Explorer (IBEX). Methods: Using both previous and the most recent determinations of the flow parameters of neutral gas in the local interstellar cloud (LIC) and an observation-based model of solar radiation pressure and ionization in the heliosphere, we simulated the flux of neutral interstellar D at IBEX for the actual measurement conditions. We assessed the number of interstellar D atom counts expected during the first three years of IBEX operation. We also simulated the observations expected during an epoch of high solar activity. In addition, we calculated the expected counts of D atoms from the thin terrestrial water layer covering the IBEX-Lo conversion surface, sputtered by neutral interstellar He atoms. Results: Most D counts registered by IBEX-Lo are expected to come from the water layer, exceeding the interstellar signal by 2 orders of magnitude. However, the sputtering should stop once the Earth leaves the portion of orbit traversed by interstellar He atoms. We identify seasons during the year when mostly the genuine interstellar D atoms are expected in the signal. During the first 3 years of IBEX operations about 2 detectable interstellar D atoms are expected. This number is comparable to the expected number of sputtered D atoms registered during the same time intervals. Conclusions: The most favorable conditions for the detection occur during low solar activity, in an interval including March and April each year. The detection chances could be improved by extending the instrument duty cycle, say, by making observations in the special deuterium mode of IBEX-Lo.
Resumo:
Metallic catcher foils have been investigated on their thermal release capabilities for future superheavy element studies. These catcher materials shall serve as connection between production and chemical investigation of superheavy elements (SHE) at vacuum conditions. The diffusion constants and activation energies of diffusion have been extrapolated for various catcher materials using an atomic volume based model. Release rates can now be estimated for predefined experimental conditions using the determined diffusion values. The potential release behavior of the volatile SHE Cn (E112), E113, Fl (E114), E115, and Lv (E116) from polycrystalline, metallic foils of Ni, Y, Zr, Nb, Mo, Hf, Ta, and W is predicted. Example calculations showed that Zr is the best suited material in terms of on-line release efficiency and long-term operation stability. If higher temperatures up to 2773 K are applicable, tungsten is suggested to be the material of choice for such experiments.
Resumo:
Atmospheric concentrations of the three important greenhouse gases (GHGs) CO2, CH4 and N2O are mediated by processes in the terrestrial biosphere that are sensitive to climate and CO2. This leads to feedbacks between climate and land and has contributed to the sharp rise in atmospheric GHG concentrations since pre-industrial times. Here, we apply a process-based model to reproduce the historical atmospheric N2O and CH4 budgets within their uncertainties and apply future scenarios for climate, land-use change and reactive nitrogen (Nr) inputs to investigate future GHG emissions and their feedbacks with climate in a consistent and comprehensive framework1. Results suggest that in a business-as-usual scenario, terrestrial N2O and CH4 emissions increase by 80 and 45%, respectively, and the land becomes a net source of C by AD 2100. N2O and CH4 feedbacks imply an additional warming of 0.4–0.5 °C by AD 2300; on top of 0.8–1.0 °C caused by terrestrial carbon cycle and Albedo feedbacks. The land biosphere represents an increasingly positive feedback to anthropogenic climate change and amplifies equilibrium climate sensitivity by 22–27%. Strong mitigation limits the increase of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier to anthropogenic climate change.