922 resultados para Solar water heaters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent international experiences have reinforced the peril to people and property from rising sea levels and associated water events. The related risks, while perhaps more obvious for properties located in coastal regions, can also impact upon inland properties. These risks are slowly influencing changes to planning practices and attitudes. This paper examines these risks from the perspective of land values and identifies the matters, and processes, that should be adopted in valuation practices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is important that industries’ water interactions respect the human right to water. Historically, within the mining industry there has been a disconnect between the management of sites’ internal water interactions and the consequences of their external impacts, including human rights impacts. This poses a challenge for the mining industry as it attempts to put the Ruggie Guiding Principles for Business and Human Rights into practice, particularly as United Nations has recently recognised the human right to water. A technical framework such as the Minerals Council of Australia’s Water Accounting Framework (WAF) can help to bridge this disconnect and to integrate human rights considerations into business practice by connecting a site’s external and internal water interactions and by encouraging regular monitoring of performance. However, at present the connection is limited since the WAF lacks the capability to formalise a site’s social water context. This work presents the Social Water Assessment Protocol (SWAP), a scoping tool consisting of a set of questions organised into taxonomic themes that capture a site’s social water context and that can be combined with the WAF to better connect human rights with mine water interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the coming decades, the mining industry faces the dual challenge of lowering both its water and energy use. This presents a difficulty since technological advances that decrease the use of one can increase the use of the other. Historically, energy and water use have been modelled independently, making it difficult to evaluate the true costs and benefits from water and energy improvements. This paper presents a hierarchical systems model that is able to represent interconnected water and energy use at a whole of site scale. In order to explore the links between water and energy four technologies advancements have been modelled: use of dust suppression additives, the adoption of thickened tailings, the transition to dry processing and the incorporation of a treatment plant. The results show a synergy between decreased water and energy use for dust suppression additives, but a trade-off for the others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three initiatives with respect to water reporting in the mining sector are compared in this paper to understand the quantities that are asked for by each initiative and the guidelines of those initiatives through means of a case study. The Global Reporting Initiative (GRI) was chosen because it has achieved widespread acceptance amongst mining companies and its water-related indicators are widely reported in corporate sustainability reporting. In contrast, the Water Footprint Network, which has been an important initiative in food and agricultural industries, has had low acceptance in the mining industry. The third initiative is the Water Accounting Framework, a collaboration between The Minerals Council of Australia and the Sustainable Minerals Institute of the University of Queensland. A water account had previously been created according to the Water Accounting Framework for the case study site, an open pit coal mine in the Bowen Basin. The resulting account provided consistent data for the Global Reporting Initiative (GRI) and the Water Footprint attributable to mining but in particular, a deficiency in the GRI indicator of EN10 reuse and recycling efficiency was illustrated quantitatively. This has far-reaching significance due to the widespread use of GRI indicators in mining corporate reports.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monitoring gases for environmental, industrial and agricultural fields is a demanding task that requires long periods of observation, large quantity of sensors, data management, high temporal and spatial resolution, long term stability, recalibration procedures, computational resources, and energy availability. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) are currently representing the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialised gas sensing systems, and offer the possibility of geo-located and time stamp samples. However, these technologies are not fully functional for scientific and commercial applications as their development and availability is limited by a number of factors: the cost of sensors required to cover large areas, their stability over long periods, their power consumption, and the weight of the system to be used on small UAVs. Energy availability is a serious challenge when WSN are deployed in remote areas with difficult access to the grid, while small UAVs are limited by the energy in their reservoir tank or batteries. Another important challenge is the management of data produced by the sensor nodes, requiring large amount of resources to be stored, analysed and displayed after long periods of operation. In response to these challenges, this research proposes the following solutions aiming to improve the availability and development of these technologies for gas sensing monitoring: first, the integration of WSNs and UAVs for environmental gas sensing in order to monitor large volumes at ground and aerial levels with a minimum of sensor nodes for an effective 3D monitoring; second, the use of solar energy as a main power source to allow continuous monitoring; and lastly, the creation of a data management platform to store, analyse and share the information with operators and external users. The principal outcomes of this research are the creation of a gas sensing system suitable for monitoring any kind of gas, which has been installed and tested on CH4 and CO2 in a sensor network (WSN) and on a UAV. The use of the same gas sensing system in a WSN and a UAV reduces significantly the complexity and cost of the application as it allows: a) the standardisation of the signal acquisition and data processing, thereby reducing the required computational resources; b) the standardisation of calibration and operational procedures, reducing systematic errors and complexity; c) the reduction of the weight and energy consumption, leading to an improved power management and weight balance in the case of UAVs; d) the simplification of the sensor node architecture, which is easily replicated in all the nodes. I evaluated two different sensor modules by laboratory, bench, and field tests: a non-dispersive infrared module (NDIR) and a metal-oxide resistive nano-sensor module (MOX nano-sensor). The tests revealed advantages and disadvantages of the two modules when used for static nodes at the ground level and mobile nodes on-board a UAV. Commercial NDIR modules for CO2 have been successfully tested and evaluated in the WSN and on board of the UAV. Their advantage is the precision and stability, but their application is limited to a few gases. The advantages of the MOX nano-sensors are the small size, low weight, low power consumption and their sensitivity to a broad range of gases. However, selectivity is still a concern that needs to be addressed with further studies. An electronic board to interface sensors in a large range of resistivity was successfully designed, created and adapted to operate on ground nodes and on-board UAV. The WSN and UAV created were powered with solar energy in order to facilitate outdoor deployment, data collection and continuous monitoring over large and remote volumes. The gas sensing, solar power, transmission and data management systems of the WSN and UAV were fully evaluated by laboratory, bench and field testing. The methodology created to design, developed, integrate and test these systems was extensively described and experimentally validated. The sampling and transmission capabilities of the WSN and UAV were successfully tested in an emulated mission involving the detection and measurement of CO2 concentrations in a field coming from a contaminant source; the data collected during the mission was transmitted in real time to a central node for data analysis and 3D mapping of the target gas. The major outcome of this research is the accomplishment of the first flight mission, never reported before in the literature, of a solar powered UAV equipped with a CO2 sensing system in conjunction with a network of ground sensor nodes for an effective 3D monitoring of the target gas. A data management platform was created using an external internet server, which manages, stores, and shares the data collected in two web pages, showing statistics and static graph images for internal and external users as requested. The system was bench tested with real data produced by the sensor nodes and the architecture of the platform was widely described and illustrated in order to provide guidance and support on how to replicate the system. In conclusion, the overall results of the project provide guidance on how to create a gas sensing system integrating WSNs and UAVs, how to power the system with solar energy and manage the data produced by the sensor nodes. This system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, zoology, and botanical studies opening the way to an ubiquitous low cost environmental monitoring, which may help to decrease our carbon footprint and to improve the health of the planet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microplasma generated between a stainless-steel capillary and water surface in ambient air with flowing argon as working gas appears as a bright spot at the tube orifice and expands to form a larger footprint on the water surface, and the dimensions of the bell-shaped microplasma are all below 1 mm. The electron density of the microplasma is estimated to be ranging from 5.32 × 109 cm−3 to 2.02 × 1014 cm−3 for the different operating conditions, which is desirable for generating abundant amounts of reactive species. A computational technique is adopted to fit the experimental emission from the N2 second positive system with simulation results. It is concluded that the vibrational temperature (more than 2000 K) is more than twice the gas temperature (more than 800 K), which indicates the non-equilibrium state of the microplasma. Both temperatures showed dependence on the discharge parameters (i.e., gas flow and discharge current). Such a plasma device could be arranged in arrays for applications utilizing plasmainduced liquid chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past decade, the mining industry has come to recognise the importance of water both to itself and to others. Water accounting is a formalisation of this importance that quantifies and communicates how water is used by individual sites and the industry as a whole. While there are a number of different accounting frameworks that could be used within the industry, the Minerals Council of Australia’s (MCA) Water Accounting Framework (WAF) is an industry-led approach that provides a consistent representation of mine site water interactions regardless of their operational, social or environmental context that allows for valid comparisons between sites and companies. The WAF contains definitions of offsite water sources and destinations and onsite water use, a methodology for applying the definitions and a set of metrics to measure site performance. The WAF is comprised of two models: the Input-Output Model, which represents the interactions between sites and their surrounding community and the Operational Model, which represents onsite water interactions. Members of the MCA have recently adopted the WAF’s Input-Output Model to report on their external water interactions in their Australian operations with some adopting it on a global basis. To support this adoption, there is a need for companies to better understand how to implement the WAF in their own operations. Developing a water account is non-trivial, particularly for sites unfamiliar with the WAF or for sites with the need to represent unusual features. This work describes how to build a water account for a given site using the Input-Output Model with an emphasis on how to represent challenging situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large scale solar plants are gaining recognition as potential energy sources for future. In this paper, the feasibility of using electric vehicles (EVs) to control a solar powered micro-grid is investigated in detail. The paper presents a PSCAD/EMTDC based model for the solar powered micro-grid with EVs. EVs are expected to have both the vehicle-to-grid (V2G) and grid-to-vehicle (G2V) capability, through which energy can either be injected into or extracted from the solar powered micro-grid to control its energy imbalance. Using the model, the behaviour of the micro-grid is investigated under a given load profile, and the results indicate that a minimum number of EVs are required to meet the energy imbalance and it is time dependent and influenced by various factors such as depth of charge, commuting profiles, reliability etc...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2012, the Bureau of Meteorology under the banner of the Water Accounting Standards Board released the Australian Water Accounting Standard 1 (AWAS 1). This standard has been in development since 2007 with key milestones being the release of the Preliminary Australian Water Accounting Standard in 2009, and the exposure draft of the Australian Water Accounting Standard in 2010. Throughout this period, the Minerals Council of Australia’s Water Accounting Framework has developed concurrently with the Australian standards and the standards have informed elements of the framework. However, the framework is not identical to the standard as the objectives between the two are different. The objective of the Water Accounting Framework is to create consistency in water reporting of the minerals industry and to assist companies reporting to corporate sustainability initiatives. The objective of AWAS 1 is to provide information to water management bodies to facilitate decisions about the allocation of water resources. Companies are to report on an annual basis, not only physical flows of water but contractual requirements to supply and obtain water, regardless of whether the transaction has been fulfilled in the reporting period. In contrast, the Water Accounting Framework only reports on flows that have physically happened. The paper will provide summary information on aspects of AWAS 1 that are most relevant to the minerals industry, show the alignment and differences between AWAS 1 and the Water Accounting Framework and explain how to obtain the information for the AWAS 1 reporting statements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mine site water balance is important for communicating information to interested stakeholders, for reporting on water performance, and for anticipating and mitigating water-related risks through water use/demand forecasting. Gaining accuracy over the water balance is therefore crucial for sites to achieve best practice water management and to maintain their social license to operate. For sites that are located in high rainfall environments the water received to storage dams through runoff can represent a large proportion of the overall inputs to site; inaccuracies in these flows can therefore lead to inaccuracies in the overall site water balance. Hydrological models that estimate runoff flows are often incorporated into simulation models used for water use/demand forecasting. The Australian Water Balance Model (AWBM) is one example that has been widely applied in the Australian context. However, the calibration of AWBM in a mining context can be challenging. Through a detailed case study, we outline an approach that was used to calibrate and validate AWBM at a mine site. Commencing with a dataset of monitored dam levels, a mass balance approach was used to generate an observed runoff sequence. By incorporating a portion of this observed dataset into the calibration routine, we achieved a closer fit between the observed vs. simulated dataset compared with the base case. We conclude by highlighting opportunities for future research to improve the calibration fit through improving the quality of the input dataset. This will ultimately lead to better models for runoff prediction and thereby improve the accuracy of mine site water balances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mining industry faces concurrent pressures of reducing water use, energy consumption and greenhouse gas (GHG) emissions in coming years. However, the interactions between water and energy use, as well as GHG e missions have largely been neglected in modelling studies to date. In addition, investigations tend to focus on the unit operation scale, with little consideration of whole-of-site or regional scale effects. This paper presents an application of a hierarchical systems model (HSM) developed to represent water, energy and GHG emissions fluxes at scales ranging from the unit operation, to the site level, to the regional level. The model allows for the linkages between water use, energy use and GHG emissions to be examined in a fl exible and intuitive way, so that mine sites can predict energy and emissions impacts of water use reduction schemes and vice versa. This paper examines whether this approach can also be applied to the regional scale with multiple mine sites. The model is used to conduct a case study of several coal mines in the Bowen Basin, Australia, to compare the utility of centralised and decentralised mine water treatment schemes. The case study takes into account geographical factors (such as water pumping distances and elevations), economic factors (such as capital and operating cost curves for desalination treatment plants) and regional factors (such as regionally varying climates and associated variance in mine water volumes and quality). The case study results indicate that treatment of saline mine water incurs a trade-off between water and energy use in all cases. However, significant cost differences between centralised and decentralised schemes can be observed in a simple economic analysis. Further research will examine the possibility for deriving model up-scaling algorithms to reduce computational requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human right to water has recently been recognised by both the United Nations General Assembly and the Human Rights Council. As the mining industry interacts with water on multiple levels, it is important that these interactions respect the human right to water. Currently, a disconnect exists between mine site water management practices and the recognition of water from a human rights perspective. The Minerals Council of Australia (MCA) Water Accounting Framework (WAF) has previously been used to strengthen the connection between water management and human rights. This article extends this connection through the use of a Social Water Assessment Protocol (SWAP). The SWAP is scoping tool consisting of a set of questions classified into taxonomic themes under leading topics with suggested sources of data that enable mine sites to better understand the local water context in which they operate. Three of the themes contained in the SWAP – gender, Indigenous peoples and health – are discussed to demonstrate how the protocol may be useful in assisting mining companies to consider their impacts on the human right to water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water reporting is becoming increasingly common amongst minerals companies. The Minerals Council of Australia’s (MCA) Water Accounting Framework (WAF), co-developed by the Centre for Water in the Minerals Industry (CWiMI), provides a standard set of terms for water reporting. The WAF was established due to the need of the minerals industry to report on its water management consistently, rather than report using company-specific terms which can cause confusion and makes company comparisons impossible. The WAF consists of two models: The Input-Output Model, which represents interactions between a site and its surrounding community and environment, and the Operational Model, which represents the interactions within a site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, diketopyrrolopyrrole-based polymer bulk heterojunction solar cells with inverted and regular architecture have been investigated. The influence of the polymer:fullerene ratio on the photoactive film nanomorphology has been studied in detail. Transmission Electron Microscopy and Atomic Force Microscopy reveal that the resulting film morphology strongly depends on the fullerene ratio. This fact determines the photocurrent generation and governs the transport of free charge carriers. Slight variations on the PCBM ratio respect to the polymer show great differences on the electrical behavior of the solar cell. Once the polymer:fullerene ratio is accurately adjusted, power conversion efficiencies of 4.7% and 4.9% are obtained for inverted and regular architectures respectively. Furthermore, by correlating the optical and morphological characterization of the polymer:fullerene films and the electrical behavior of solar cells, an ad hoc interpretation is proposed to explain the photovoltaic performance as a function of this polymer:blend composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel low bandgap solution processable diketopyrrolopyrrole (DPP) based derivatives functionalized with electron withdrawing end capping groups (trifluoromethylphenyl and trifluorophenyl) were synthesized, and their photophysical, electrochemical and photovoltaic properties were investigated. These compounds showed optical bandgaps ranging from 1.81 to 1.94 eV and intense absorption bands that cover a wide range from 300 to 700 nm, attributed to charge transfer transition between electron rich phenylene-thienylene moieties and the electron withdrawing diketopyrrolopyrrole core. All of the compounds were found to be fluorescent in solution with an emission wavelength ranging from 600 to 800 nm. Cyclic voltammetry indicated reversible oxidation and reduction processes with tuning of HOMO-LUMO energy levels. Bulk heterojunction (BHJ) solar cells using poly(3-hexylthiophene) (P3HT) as the electron donor with these new acceptors were used for fabrication. The best power conversion efficiencies (PCE) using 1:2 donor-acceptor by weight mixture were 1% under simulated AM 1.5 solar irradiation of 100 mW cm-2. These findings suggested that a DPP core functionalized with electron accepting end-capping groups were a promising new class of solution processable low bandgap n-type organic semiconductors for organic solar cell applications.