979 resultados para Soft condensed matter
Resumo:
The development of new electroluminescence polymers for specific colour tuning in Polymer Light Emitting Devices (PLEDs) is currently one of the most important fields for organic electronics. This work reports a synthesis of a new electroluminescent polymer and the concomitant test as PLED emissive layer. The polymer, synthesised from fluorene, is poly(9,9`-n-dihexil-2,7-fluorenodiilvinylene-alt-2,5thiophene) or PFT The luminescence shows large bands with maxima around 480 nm in absorption and 560 nm in emission. The device was made in a three layer structure, with PEDOT:PSS as hole transport layer, PFT as emissive layer and butyl-PBD as electron transport layer. The electroluminescence spectrum shows a strong band peaked at 540 nm. For an applied voltage of 12 Volt, the brightness at normal angle of viewing is near 10 cd/m(2) and the luminous efficiency is of 0.01 lm/W. A discussion about carrier transport and the electroluminescence properties is made.
Resumo:
In this work, two ruthenium complexes, [Ru(bpy)(3)](PF6)(2) and [Ru(ph2phcn)(3)](PF6)(2) in poly(inethylinethacrylate) matrix were employed to build single-layer light-emitting electrochemical cells by spin coating on indium tin oxide substrate. In both cases the electroluminescence spectra exhibit a relatively broad band with maxima near to 625 rim and CIE (x, y) color coordinates of (0.64, 0.36), which are comparable with the photoluminescence data in the same medium. The best result was obtained with the [Ru(bpy)(3)](PF6)(2) device where the optical output power approaches 10 mu W at the band maximum with a wall-plug efficiency higher than 0.03%. The lowest driving voltage is about 4 V for an electrical current of 20 mA. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Polyvinylpyrollidone (PVP)-capped platinum nanoparticles (NPs) are found to change shape from spherical to flat when deposited on mesoporous silica substrates (SBA-15). Transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and extended X-ray absorption fine structure (EXAFS) analyses are used in these studies. The SAXS results indicate that, after deposition, the 2 nm NPs have an average gyration radius 22% larger than in solution, while the EXAFS measurements indicate a decrease in first neighbor co-ordination number from 9.3 to 7.4. The deformation of these small capped NPs is attributed to interactions with the surface of the SBA-15 support, as evidenced by X-ray absorption near-edge structure (XANES).
Resumo:
A correlation between lattice parameters, oxygen composition, and the thermoelectric and Hall coefficients is presented for single-crystal Li0.9Mo6O17, a quasi-one-dimensional (Q1D) metallic compound. The possibility that this compound is a compensated metal is discussed in light of a substantial variability observed in the literature for these transport coefficients.
Resumo:
When a scaled structure (model or replica) is used to predict the response of a full-size compound (prototype), the model geometric dimensions should relate to the corresponding prototype dimensions by a single scaling factor. However, owing to manufacturing technical restrictions, this condition cannot be accomplished for some of the dimensions in real structures. Accordingly, the distorted geometry will not comply with the overall geometric scaling factor, infringing the Pi theorem requirements for complete dynamic similarity. In the present study, a method which takes geometrical distortions into account is introduced, leading to a model similar to the prototype. As a means to infer the performance of this method, three analytical problems of structures subjected to dynamic loads are analysed. It is shown that the replica developed applying this technique is able to accurately predict the full-size structure behaviour even when the studied models have some of their dimensions severely distorted. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
By performing density functional theory calculations we show that it is possible to make the electronic bandgap in bilayer graphene supported on hexagonal boron nitride (h-BN) substrates tunable. We also show that, under applied electric fields, it is possible to insert states from h-BN into the bandgap, which generate a conduction channel through the substrate making the system metallic. In addition, we verify that the breakdown voltage strongly depends on the number of h-BN layers. We also show that both the breakdown voltage and the bandgap tuning are independent of the h-BN stacking order.
Resumo:
The dynamics of holon-doublon pairs is studied in Hubbard two-leg ladders using the time-dependent density matrix renormalization group method. We find that the geometry of the two-leg ladder, which is qualitatively different from a one-dimensional chain due to the presence of a spin gap, strongly affects the propagation of a doublon-holon pair. Two distinct regimes are identified. For weak interleg coupling, the results are qualitatively similar to the case of the propagation previously reported in Hubbard chains, with only a renormalization of parameters. More interesting is the case of strong interleg coupling where substantial differences arise, particularly regarding the double occupancy and properties of the excitations such as the doublon speed. Our results suggest a connection between the presence of a spin gap and qualitative changes in the doublon speed, indicating a weak coupling between the doublon and the magnetic excitations.
Resumo:
In this study we systematically investigated how the solvent composition used for polymer dissolution affects the porous structures of spin-coated polymers films. Cellulose acetate butyrate (CAB) and poly(methylmethacrylate) with low(PMMA-L) and high (PMMA-H) molecular weights were dissolved in mixtures of acetone (AC) and ethyl acetate (EA) at constant polymer concentration of 10 g/L The films were spin-coated at a relative air humidity of 55+/-5%, their thickness and index of refraction were determined by means of ellipsometry and their morphology was analyzed by atomic force microscopy. The dimensions and frequency of nanocavities on polymer films increased with the acetone content (phi(AC)) in the solvent mixture and decreased with increasing polymer molecular weight. Consequently, as the void content increased in the films, their apparent thicknesses increased and their indices of refraction decreased, creating low-cost anti-reflection surface. The void depth was larger for PMMA-L than for CAB. This effect was attributed to different activities of EA and AC in CAB or PMMA-L solution, the larger mobility of chains and the lower polarity of PMMA-L in comparison to CAB. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
We have shown the possibility of operation by the piezooptical response of PbO-GeO2 glasses doped with rare earth ions and silver nanoparticles by illumination of double frequency CO2 nanosecond laser. Substantial influence of thermoannealing on the output photoinduced elastooptical susceptibilities was established. The effect is very sensitive to temperature and to the corresponding tensor components. The effect of thermoannealing leads to enhanced long-range ordering with the occurrence of corresponding trapping levels within the forbidden gaps. The discovered effects may be used for creation of low-temperature IR laser triggers.
Resumo:
The transport properties of the two-dimensional system in HgTe-based quantum wells containing simultaneously electrons and holes of low densities are examined. The Hall resistance, as a function of perpendicular magnetic field, reveals an unconventional behavior, different from the classical N-shaped dependence typical for bipolar systems with electron-hole asymmetry. The quantum features of magnetotransport are explained by means of numerical calculation of the Landau level spectrum based on the Kane Hamiltonian. The origin of the quantum Hall plateau sigma(xy) = 0 near the charge neutrality point is attributed to special features of Landau quantization in our system.
Resumo:
In this paper we investigate the quantum phase transition from magnetic Bose Glass to magnetic Bose-Einstein condensation induced by amagnetic field in NiCl2 center dot 4SC(NH2)(2) (dichloro-tetrakis-thiourea-nickel, or DTN), doped with Br (Br-DTN) or site diluted. Quantum Monte Carlo simulations for the quantum phase transition of the model Hamiltonian for Br-DTN, as well as for site-diluted DTN, are consistent with conventional scaling at the quantum critical point and with a critical exponent z verifying the prediction z = d; moreover the correlation length exponent is found to be nu = 0.75(10), and the order parameter exponent to be beta = 0.95(10). We investigate the low-temperature thermodynamics at the quantum critical field of Br-DTN both numerically and experimentally, and extract the power-law behavior of the magnetization and of the specific heat. Our results for the exponents of the power laws, as well as previous results for the scaling of the critical temperature to magnetic ordering with the applied field, are incompatible with the conventional crossover-scaling Ansatz proposed by Fisher et al. [Phys. Rev. B 40, 546 (1989)]. However they can all be reconciled within a phenomenological Ansatz in the presence of a dangerously irrelevant operator.
Resumo:
This paper reports on Y2O3:Eu3+ containing 1 mol% of Ag-0 nanoparticle films recovered with a SiO2 layer by using glass foil as a substrate for a possible optical display device application. The obtained film showed an intense emission at 612 nm due to the Eu3+ 5D0 -> F-7(2) hypersensitive transition, a high transmittance in that emission range, an excellent optical quality, and a high absorption only below 300 nm. Moreover, despite the presence of the SiO2 layer used to improve the phosphor adhesion on Corning (R) foil substrates, the intensity ratios between the emissions assigned to Eu3+ D-5(0) -> F-7(2) (dipole electric transition) and D-5(0) -> F-7(1) (dipole magnetic transition) were not affected by it. The x and y coordinate values found in the 1931 Commission Internationale de l'Eclairage Chromaticity Diagram for this film reveal that it has a suitable pure red color emission for optical displays devices. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
Nanostructured Pb0.90Ba0.10Zr0.40Ti0.60O3 dense ceramics presenting an average grain size of 62 +/- 5 nm was prepared by the polymeric precursor method and using the spark plasma sintering technique. The dielectric permittivity curves versus temperature exhibit broad anomaly, indicative of a diffuse phase transition. This result can be explained by the spread of Curie temperatures which are expected to depend on the degree of tetragonality related to the grain size distribution. A pronounced decrease in the maximum of the dielectric permittivity value is attributed to the existence of a large amount of grain boundaries which are non-ferroelectric regions.
Resumo:
We study the spin Hall conductance fluctuations in ballistic mesoscopic systems. We obtain universal expressions for the spin and charge current fluctuations, cast in terms of current-current autocorrelation functions. We show that the latter are conveniently parametrized as deformed Lorentzian shape lines, functions of an external applied magnetic field and the Fermi energy. We find that the charge current fluctuations show quite unique statistical features at the symplectic-unitary crossover regime. Our findings are based on an evaluation of the generalized transmission coefficients correlation functions within the stub model and are amenable to experimental test. DOI: 10.1103/PhysRevB.86.235112
Resumo:
The structure of gold-platinum nanoparticles is heavily debated as theoretical calculations predict core-shell particles, whereas x-ray diffraction experiments frequently detect randomly mixed alloys. By calculating the structure of gold-platinum nanoparticles with diameters of up to approximate to 3.5 nm and simulating their x-ray diffraction patterns, we show that these seemingly opposing findings need not be in contradiction: Shells of gold are hardly visible in usual x-ray scattering, and the interpretation of Vegard's law is ambiguous on the nanoscale. DOI: 10.1103/PhysRevB.86.241403