985 resultados para Simulationen, Quanten Modelle, Rezonanz-Tunnel Diode
Resumo:
The antioxidant activities and polyphenolic levels of "assa peixe," "cambara," and "morrão de candeia" Brazilian honeys were investigated. Phenolic extracts of 11 honeys were evaluated spectrophotometrically to determine their total phenolic and flavonoid contents, and their antioxidant activities were measured using DPPH, ABTS, and FRAP assays. High-performance liquid chromatography coupled with diode array detection was applied to determine the phenolic composition of the honey extracts. The presence of fourteen phenolic compounds was established (eleven phenolic acids and three flavonoids), as well as HMF and abscisic acid. Principal component analysis was applied to classify the honey samples according to their floral origins.
Resumo:
Ilex paraguariensis (yerba-mate) is used as a beverage, and its extract requires adequate quality control methods in order to guarantee quality and safe use. Strategies to develop and optimize a chromatographic method to quantify theobromine, caffeine, and chlorogenic acid in I. paraguariensis extracts were evaluated by applying a quality by design (QbD) model and ultra high-performance liquid chromatography (UHPLC). The presence of these three phytochemical markers in the extracts was evaluated using UHPLC-MS and was confirmed by the chromatographic bands in the total ion current traces (m/z of 181.1 [M+H]+, 195.0 [M+H]+, and 353.0 [M−H]−, respectively). The developed method was then transferred to a high-performance liquid chromatography (HPLC) platform, and the three phytochemical markers were used as external standards in the validation of a method for analyses of these compounds in extracts using a diode array detector (DAD). The validated method was applied to quantify the chlorogenic acid, caffeine, and theobromine in the samples. HPLC-DAD chromatographic fingerprinting was also used in a multivariate approach to process the entire data and to separate the I. paraguariensis extracts into two groups. The developed method is very useful for qualifying and quantifying I. paraguariensis extracts.
Resumo:
Liquid chromatography is often used for the determination of pesticide multiresidues in foods. In Brazil, the strawberry crop is an example of a food with high levels of irregularities because of the application of pesticides. This is a major concern from the perspective of food safety, environmental protection, and certification for food export. The purpose of this study is to evaluate and compare chromatographic separation and detection methods in relation to a newly developed and validated method using ultra high performance liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) for the analytical determination of pesticides in strawberries. The comparisons were based on evaluations of the analysis time, consumption of the solvent in the mobile phase, injection volume, detectability, matrix effect, and recovery. The results showed that the LC–MS/MS and UHPLC–MS/MS techniques were both extremely efficient at analyzing pesticide residues with different physico-chemical parameters that were present at low concentrations in a complex matrix. The UHPLC separation method provided better chromatographic performance and productivity, which contributed favorably to routine analytical determinations. Detection by MS/MS had better detectability and selectivity compared with the diode array detector.
Resumo:
Specimens of Leonotis nepetiflolia were obtained from cultivated and wild environments to verify their influences in chemical composition. Phytochemical analyses were conducted for the ethyl acetate phase obtained by partitioning the crude ethanol extract from the cultivated leaves of L. nepetifolia. In doing so, flavonoid 3',4',5-trimethoxy-6,7-dihidroxyflavone (cirsiliol), a chemotaxonomic marker of the family Lamiaceae, was isolated. The results reveal that all phases and extracts tested exhibited weak to moderate antimicrobial activity against the strains of bacteria tested. The evaluation of in vitrocytotoxic and antitumor activity showed that the ethyl acetate phases obtained from both wild and cultivated leaves exhibit high potential cytotoxic and antitumor (> 78.0% of inhibition) activity. The major component of these phases was identified by high-performance liquid chromatography-diode array detector and nuclear magnetic resonance analyses using both 1D and 2D methods. The results further indicate that the flavonoid cirsiliol is the agent responsible for the activity observed in these phases.
Resumo:
Electrodegradation of atrazine in water was performed using homemade (PA and PB) and purchased (PC) boron-doped diamond anodes. The degradation was monitored off-line by analyzing total organic carbon and high performance liquid chromatography with diode array detector (HPLC-DAD) and at-line by UV spectroscopy. The spectra were recorded every 2 min. The rank deficiency problem was resolved by assembling an augmented column-wise matrix. HPLC was employed to separate the original and byproducts degradation components. Aiming the same goal, multivariate curve resolution - alternating least squares (MCR-ALS) was applied to resolve the UV spectroscopic data. Comparison between HPLC and MCR-ALS separations is presented. By using MCR-ALS the spectra of atrazine and two byproducts were successfully resolved and the resulted concentration profiles properly represented the system studied. The ALS explained variance (R2) for PA, PB and PC was equal to 99.99% for all of them and the lack of fit for PA, PB and PC were 0.39, 0.34 and 0.54 respectively. The correlation (R) between the recovered and pure spectra were calculate for each electrodegradation, validating the MCR-ALS results. The average R was equal to 0.997. The spectral and concentration profiles described with this new approach are in agreement with HPLC-DAD results. The proposed method is an alternative to classical analyses for monitoring of the degradation process, mainly due to the simplicity, fast results and economy.
Resumo:
Polttokennojen, erityisesti SOFC-kennojen, tutkimuksessa on viime vuosina saavutettu merkittäviä edistysaskelia ja mahdollisuudet kennojen laajamittaiseen hyödyntämiseen paranevat koko ajan. Polttokennojen yleistyessä tarvitaan tehoelektroniikkaa muokkaamaan kennojen tasajännite verkkoon sopivaksi vaihtojännitteeksi. Verkkovaihtosuuntaaja vaatii korkeamman jännitetason, kuin polttokennosta on saatavissa, joten tasajännitetasoa on ensin nostettava. Tässä diplomityössä esitellään kolme eri hakkuritopologiaa ja perehdytään kokosiltahakkurin optimointiin. Hakkurin pääasialliset häviölähteet olivat toision diodisilta ja transistorit. Diodien vaihtaminen piidiodeista piikarbididiodeihin ei parantanut hyötysuhdetta, koska toision jännite tarkastellussa sovelluksessa oli matala. Muuntajan käämiminen litz-johtimella paransi hyötysuhdetta merkittävästi.
Resumo:
Leditekniikan kehitys viime vuosina on mahdollistanut niiden käytön yleisvalaistuksessa. Tässä työssä tehdään katsaus leditekniikan nykytilaan ja tulevaisuuteen, sekä osoitetaan, että ledivalaisimien energiankulutuksessa ja huoltokustannuksissa tehdyillä säästöillä voidaan kattaa suuremmat hankintakustannukset ja päästä yhtä suuriin tai pienempiin elinkaarikustannuksiin verrattuna perinteisiin kaasupurkausvalaisimiin. Valaisimien määrät on laskettu Dialux-valaistuslaskentaohjelmalla siten että rautatieasemien avolaitureiden ja katettujen laitureiden valaistusvaatimukset täyttyvät. Tuloksia voi soveltaa muihin vastaaviin tiloihin kuten asematunneleihin tai kevyen liikenteen väylille.
Resumo:
Työn tarkoituksena oli tarkastella uutta kuvantamistekniikkaa käyttäen happikaasun dispergointia keskisakeuksisen massasuspension joukkoon laboratoriosekoittimessa. Työssä pyrittiin tarkastelemaan muodostuvan dispersion homogeenisuutta neljästä eri kuvauspisteestä sekoittimen kannesta ja kyljestä. Samalla tarkasteltiin myös sekoittimen tehonkulutusta sekä tehonkulutuksen ja aikaansaadun dispersion välistä yhteyttä. Työn yhtenä tarkoituksena oli myös tarkastella uuden kuvantamistekniikan mahdollisuuksia tämäntyyppisissä sovellutuksissa, sillä työ kuuluu PulpVision-projektiin, jossa kehitetään massa- ja paperiteollisuuden uusia konenäkösovellutuksia. Työn kokeellinen osuus koostui sekoituskokeista, joissa tarkasteltiin neljästä kuvauspisteestä kahdella sekoittimen nopeudella mänty- ja koivususpensioihin muodostuvaa kuplakokojakaumaa. Sekoituskokeiden lisäksi tehtiin tehonkulutuskokeita, joissa tarkasteltiin sekoittimen tehonkulutusta sekoittimen täyttöasteen funktiona koivu- ja mäntysuspensioilla sekä vedellä. Työn tuloksien perusteella todettiin, että koivususpensiosta havaittujen kuplien pinta-ala oli noin puolet mäntysuspensiosta havaittujen kuplien pinta-alasta. Sekoittimen roottorin pyörimisnopeuden puolittuessa suspensioon dispergoidun hapen kuplakoko kasvoi huomattavasti. Neljästä kuvausyhteestä tarkasteltuna havaittiin pienimpien kuplien esiintyvän sekoittimen alaosassa. Mäntysuspension tehonkulutuksen havaittiin kasvavan viidenneksellä, kun sekoittimen täyttöaste kasvoi 10 %, kun taas koivususpension tehonkulutuksen kasvu oli tästä vain puolet. Kuvantamislaitteiston todettiin olevan tämänkaltaiseen sovellutukseen riittävä, varsinkin kun valonlähteenä käytetään pulssilaseria.
Resumo:
The consumption of manganese is increasing, but huge amounts of manganese still end up in waste in hydrometallurgical processes. The recovery of manganese from multi-metal solutions at low concentrations may not be economical. In addition, poor iron control typically prevents the production of high purity manganese. Separation of iron from manganese can be done with chemical precipitation or solvent extraction methods. Combined carbonate precipitation with air oxidation is a feasible method to separate iron and manganese due to the fast kinetics, good controllability and economical reagents. In addition the leaching of manganese carbonate is easier and less acid consuming than that of hydroxide or sulfide precipitates. Selective iron removal with great efficiency from MnSO4 solution is achieved by combined oxygen or air oxidation and CaCO3 precipitation at pH > 5.8 and at a redox potential of > 200 mV. In order to avoid gypsum formation, soda ash should be used instead of limestone. In such case, however, extra attention needs to be paid on the reagents mole ratios in order to avoid manganese coprecipitation. After iron removal, pure MnSO4 solution was obtained by solvent extraction using organophosphorus reagents, di-(2-ethylhexyl)phosphoric acid (D2EHPA) and bis(2,4,4- trimethylpentyl)phosphinic acid (CYANEX 272). The Mn/Ca and Mn/Mg selectivities can be increased by decreasing the temperature from the commonly used temperatures (40 –60oC) to 5oC. The extraction order of D2EHPA (Ca before Mn) at low temperature remains unchanged but the lowering of temperature causes an increase in viscosity and slower phase separation. Of these regents, CYANEX 272 is selective for Mn over Ca and, therefore, it would be the better choice if there is Ca present in solution. A three-stage Mn extraction followed by a two-stage scrubbing and two-stage sulfuric acid stripping is an effective method of producing a very pure MnSO4 intermediate solution for further processing. From the intermediate MnSO4 some special Mn- products for ion exchange applications were synthesized and studied. Three types of octahedrally coordinated manganese oxide materials as an alternative final product for manganese were chosen for synthesis: layer structured Nabirnessite, tunnel structured Mg-todorokite and K-kryptomelane. As an alternative source of pure MnSO4 intermediate, kryptomelane was synthesized by using a synthetic hydrometallurgical tailings. The results show that the studied OMS materials adsorb selectively Cu, Ni, Cd and K in the presence of Ca and Mg. It was also found that the exchange rates were reasonably high due to the small particle dimensions. Materials are stable in the studied conditions and their maximum Cu uptake capacity was 1.3 mmol/g. Competitive uptake of metals and acid was studied using equilibrium, batch kinetic and fixed-bed measurements. The experimental data was correlated with a dynamic model, which also accounts for the dissolution of the framework manganese. Manganese oxide micro-crystals were also bound onto silica to prepare a composite material having a particle size large enough to be used in column separation experiments. The MnOx/SiO2 ratio was found to affect significantly the properties of the composite. The higher the ratio, the lower is the specific surface area, the pore volume and the pore size. On the other hand, higher amount of silica binder gives composites better mechanical properties. Birnesite and todorokite can be aggregated successfully with colloidal silica at pH 4 and with MnO2/SiO2 weight ratio of 0.7. The best gelation and drying temperature was 110oC and sufficiently strong composites were obtained by additional heat-treatment at 250oC for 2 h. The results show that silica–supported MnO2 materials can be utilized to separate copper from nickel and cadmium. The behavior of the composites can be explained reasonably well with the presented model and the parameters estimated from the data of the unsupported oxides. The metal uptake capacities of the prepared materials were quite small. For example, the final copper loading was 0.14 mmol/gMnO2. According to the results the special MnO2 materials are potential for a specific environmental application to uptake harmful metal ions.
Resumo:
The reduction of pesticide spraying drift is still one of the major challenges in Brazilian agriculture. The aim of this study was to evaluate the potential of different adjuvant products, such as surfactants, drift retardants, mineral oil and vegetable oil for reducing drift in agricultural spraying. The experiment consisted of quantifying drift of sprayings of 18 adjuvants dissolved in water under controlled conditions in a wind tunnel. Tests were performed in triplicates with spraying nozzles type Teejet XR8003 VK, pressure of 200kPa and medium drops. Solutions sprayed were marked with Brilliant Blue dye at 0.6% (m v-1). The drift was collected using polyethylene strips transversally fixed along the tunnel at different distances from the nozzle and different heights from the bottom part of the tunnel. Drift deposits were evaluated by spectrophotometry in order to quantify deposits. The adjuvants from chemical groups of mineral oil and drift retardant resulted in lower values of drift in comparison with surfactants and water. The results obtained in laboratory show that the selection of appropriate class and concentration of adjuvants can significantly decrease the risk of drift in agricultural spraying. However, the best results obtained in laboratory should be validated with pesticide under field conditions in the future.
Resumo:
This study defined the main adjuvant characteristics that may influence or help to understand drift formation process in the agricultural spraying. It was evaluated 33 aqueous solutions from combinations of various adjuvants and concentrations. Then, drifting was quantified by means of wind tunnel; and variables such as percentage of droplets smaller than 50 μm (V50), 100 μm (V100), diameter of mean volume (DMV), droplet diameter composing 10% of the sprayed volume (DV0.1), viscosity, density and surface tension. Assays were performed in triplicate, using Teejet XR8003 flat fan nozzles at 200 kPa (medium size droplets). Spray solutions were stained with Brilliant Blue Dye at 0.6% (m/ v). DMV, V100, viscosity cause most influence on drift hazardous. Adjuvant characteristics and respective methods of evaluation have applicability in drift risk by agricultural spray adjuvants.
Resumo:
The Nd:YAG laser is used as the palliative treatment of obstructive and/or hemorrhagic intestinal lesions with an effective but temporary symptomatic relief, with symptoms and signs recurrence after six to eight weeks. This report describes the treatment of a patient bearing a low rectal adenocarcinoma through diode laser ablation and the result after 17 months.
Resumo:
The objective of this thesis is the development of a multibody dynamic model matching the observed movements of the lower limb of a skier performing the skating technique in cross-country style. During the construction of this model, the formulation of the equation of motion was made using the Euler - Lagrange approach with multipliers applied to a multibody system in three dimensions. The description of the lower limb of the skate skier and the ski was completed by employing three bodies, one representing the ski, and two representing the natural movements of the leg of the skier. The resultant system has 13 joint constraints due to the interconnection of the bodies, and four prescribed kinematic constraints to account for the movements of the leg, leaving the amount of degrees of freedom equal to one. The push-off force exerted by the skate skier was taken directly from measurements made on-site in the ski tunnel at the Vuokatti facilities (Finland) and was input into the model as a continuous function. Then, the resultant velocities and movement of the ski, center of mass of the skier, and variation of the skating angle were studied to understand the response of the model to the variation of important parameters of the skate technique. This allowed a comparison of the model results with the real movement of the skier. Further developments can be made to this model to better approximate the results to the real movement of the leg. One can achieve this by changing the constraints to include the behavior of the real leg joints and muscle actuation. As mentioned in the introduction of this thesis, a multibody dynamic model can be used to provide relevant information to ski designers and to obtain optimized results of the given variables, which athletes can use to improve their performance.
Resumo:
Fuel cells are a promising alternative for clean and efficient energy production. A fuel cell is probably the most demanding of all distributed generation power sources. It resembles a solar cell in many ways, but sets strict limits to current ripple, common mode voltages and load variations. The typically low output voltage from the fuel cell stack needs to be boosted to a higher voltage level for grid interfacing. Due to the high electrical efficiency of the fuel cell, there is a need for high efficiency power converters, and in the case of low voltage, high current and galvanic isolation, the implementation of such converters is not a trivial task. This thesis presents galvanically isolated DC-DC converter topologies that have favorable characteristics for fuel cell usage and reviews the topologies from the viewpoint of electrical efficiency and cost efficiency. The focus is on evaluating the design issues when considering a single converter module having large current stresses. The dominating loss mechanism in low voltage, high current applications is conduction losses. In the case of MOSFETs, the conduction losses can be efficiently reduced by paralleling, but in the case of diodes, the effectiveness of paralleling depends strongly on the semiconductor material, diode parameters and output configuration. The transformer winding losses can be a major source of losses if the windings are not optimized according to the topology and the operating conditions. Transformer prototyping can be expensive and time consuming, and thus it is preferable to utilize various calculation methods during the design process in order to evaluate the performance of the transformer. This thesis reviews calculation methods for solid wire, litz wire and copper foil winding losses, and in order to evaluate the applicability of the methods, the calculations are compared against measurements and FEM simulations. By selecting a proper calculation method for each winding type, the winding losses can be predicted quite accurately before actually constructing the transformer. The transformer leakage inductance, the amount of which can also be calculated with reasonable accuracy, has a significant impact on the semiconductor switching losses. Therefore, the leakage inductance effects should also be taken into account when considering the overall efficiency of the converter. It is demonstrated in this thesis that although there are some distinctive differences in the loss distributions between the converter topologies, the differences in the overall efficiency can remain within a range of a few percentage points. However, the optimization effort required in order to achieve the high efficiencies is quite different in each topology. In the presence of practical constraints such as manufacturing complexity or cost, the question of topology selection can become crucial.
Resumo:
This study investigated the surface hardening of steels via experimental tests using a multi-kilowatt fiber laser as the laser source. The influence of laser power and laser power density on the hardening effect was investigated. The microhardness analysis of various laser hardened steels was done. A thermodynamic model was developed to evaluate the thermal process of the surface treatment of a wide thin steel plate with a Gaussian laser beam. The effect of laser linear oscillation hardening (LLOS) of steel was examined. An as-rolled ferritic-pearlitic steel and a tempered martensitic steel with 0.37 wt% C content were hardened under various laser power levels and laser power densities. The optimum power density that produced the maximum hardness was found to be dependent on the laser power. The effect of laser power density on the produced hardness was revealed. The surface hardness, hardened depth and required laser power density were compared between the samples. Fiber laser was briefly compared with high power diode laser in hardening medium-carbon steel. Microhardness (HV0.01) test was done on seven different laser hardened steels, including rolled steel, quenched and tempered steel, soft annealed alloyed steel and conventionally through-hardened steel consisting of different carbon and alloy contents. The surface hardness and hardened depth were compared among the samples. The effect of grain size on surface hardness of ferritic-pearlitic steel and pearlitic-cementite steel was evaluated. In-grain indentation was done to measure the hardness of pearlitic and cementite structures. The macrohardness of the base material was found to be related to the microhardness of the softer phase structure. The measured microhardness values were compared with the conventional macrohardness (HV5) results. A thermodynamic model was developed to calculate the temperature cycle, Ac1 and Ac3 boundaries, homogenization time and cooling rate. The equations were numerically solved with an error of less than 10-8. The temperature distributions for various thicknesses were compared under different laser traverse speed. The lag of the was verified by experiments done on six different steels. The calculated thermal cycle and hardened depth were compared with measured data. Correction coefficients were applied to the model for AISI 4340 steel. AISI 4340 steel was hardened by laser linear oscillation hardening (LLOS). Equations were derived to calculate the overlapped width of adjacent tracks and the number of overlapped scans in the center of the scanned track. The effect of oscillation frequency on the hardened depth was investigated by microscopic evaluation and hardness measurement. The homogeneity of hardness and hardened depth with different processing parameters were investigated. The hardness profiles were compared with the results obtained with conventional single-track hardening. LLOS was proved to be well suitable for surface hardening in a relatively large rectangular area with considerable depth of hardening. Compared with conventional single-track scanning, LLOS produced notably smaller hardened depths while at 40 and 100 Hz LLOS resulted in higher hardness within a depth of about 0.6 mm.