950 resultados para Simulação Monte Carlo
Resumo:
The objective of this study is to determine the economical and energetic efficiency of the castor bean culture in "Zona da Mata" and South of Minas Gerais. Through the method of simulation "Monte Carlo", we verified the probabilities of occurrence of the economical, cultural and energetic efficiency indexes. In relation to the production systems of castor bean in Minas Gerais in the season 2005/2006, we established that the variables price and productivity were the most noticeable for the producers from "Zona da Mata", while in the South of Minas it was productivity. We verified that the probability of the economical efficiency index to be lower than one was 43,26% for the producers from "Zona da Mata" and 39,57% for the ones from the South of Minas. The medium price received covered the medium costs of production. However, we observed that the medium costs in these regions of Minas Gerais, were over the minimum price. Regarding the energetic analysis, the results showed that the systems in the regions studied in Minas Gerasi, presented average of cultural efficiency indexes of 8,26 and 18,89. We concluded that despite the result being favorable from the energetic point of view, from the economical sustainability point of view there is the need of a more effective support policy for the castor bean, taking into consideration that the expectations of the producers with PNPB were not confirmed.
Resumo:
Pós-graduação em Saúde Coletiva - FMB
Resumo:
This study aimed to model a equation for the demand of automobiles and light commercial vehicles, based on the data from February 2007 to July 2014, through a multiple regression analysis. The literature review consists of an information collection of the history of automotive industry, and it has contributed to the understanding of the current crisis that affects this market, which consequence was a large reduction in sales. The model developed was evaluated by a residual analysis and also was used an adhesion test - F test - with a significance level of 5%. In addition, a coefficient of determination (R2) of 0.8159 was determined, indicating that 81.59% of the demand for automobiles and light commercial vehicles can be explained by the regression variables: interest rate, unemployment rate, broad consumer price index (CPI), gross domestic product (GDP) and tax on industrialized products (IPI). Finally, other ten samples, from August 2014 to May 2015, were tested in the model in order to validate its forecasting quality. Finally, a Monte Carlo Simulation was run in order to obtain a distribution of probabilities of future demands. It was observed that the actual demand in the period after the sample was in the range that was most likely to occur, and that the GDP and the CPI are the variable that have the greatest influence on the developed model
Resumo:
The automobile industry shows relevance inside the Brazilian industrial scenario since it contributes with the development of a significant chain of supply, distributors, workshops, publicity agencies and insurance companies in the internal market, aside from being one of the five biggest worldwide market. Thereby, the federal government decreed in Dec, 17th 2012 by Law nº 12.715 the Inovar-Auto Program. As the Adjusted Present Value (APV) is highly recommended, although not yet widespread to public politics of tax reduction, this work intends to apply the APV method on the cash flow analysis of an automobile sector's company, which has recently installed in national territory and wants to rely with governmental incentives proposed by Inovar-Auto Program. The developed work evaluates the company's current cash flow stochastically from mathematical modeling of variables such as price, demand and interest rate through probability distributions with the assist of Crystal Ball software, a Microsoft Excel Add-in, generating different scenarios from Monte Carlo Simulation. As results probabilities situations have been evaluated until the end of the Inovar-Auto's conducted period, in 2017. Beside APV others indicator such as Internal Rate of Return (IRR) and payback period were estimated for the investment project. For APV a sampling distribution with only 0.057% of risk, IRR of 29% were obtained and estimated project payback period was 4.13 years
Resumo:
The automobile industry has a growing importance in the Brazilian economic environment. The industry moves a huge chain that encompasses manufacturers, suppliers of raw materials, auto parts dealers, gas stations, insurance companies, repair shops, tire stores, media companies, advertising agencies, among others. Because of this importance in the current economic environment in Brazil, the federal government, through Law No. 12715 of 17 December 2012 established a Program for the Promotion of Innovation and Densification in the Productive Chain of Motor Vehicles called INOVAR-AUTO in order to support technological development, innovation, safety, environmental protection, energy efficiency and quality of cars, trucks, buses and auto parts. The specific purpose of this study, a simulation for discussion of the viability of the program implementation using the Monte Carlo Simulation combined with the Cash-Flow-at-Risk was performed. To this end, an exploratory and documentary literature on the subject was held as well as a case study in a automobile company of Japanese origin
Resumo:
This study aimed to model a equation for the demand of automobiles and light commercial vehicles, based on the data from February 2007 to July 2014, through a multiple regression analysis. The literature review consists of an information collection of the history of automotive industry, and it has contributed to the understanding of the current crisis that affects this market, which consequence was a large reduction in sales. The model developed was evaluated by a residual analysis and also was used an adhesion test - F test - with a significance level of 5%. In addition, a coefficient of determination (R2) of 0.8159 was determined, indicating that 81.59% of the demand for automobiles and light commercial vehicles can be explained by the regression variables: interest rate, unemployment rate, broad consumer price index (CPI), gross domestic product (GDP) and tax on industrialized products (IPI). Finally, other ten samples, from August 2014 to May 2015, were tested in the model in order to validate its forecasting quality. Finally, a Monte Carlo Simulation was run in order to obtain a distribution of probabilities of future demands. It was observed that the actual demand in the period after the sample was in the range that was most likely to occur, and that the GDP and the CPI are the variable that have the greatest influence on the developed model
Resumo:
The automobile industry shows relevance inside the Brazilian industrial scenario since it contributes with the development of a significant chain of supply, distributors, workshops, publicity agencies and insurance companies in the internal market, aside from being one of the five biggest worldwide market. Thereby, the federal government decreed in Dec, 17th 2012 by Law nº 12.715 the Inovar-Auto Program. As the Adjusted Present Value (APV) is highly recommended, although not yet widespread to public politics of tax reduction, this work intends to apply the APV method on the cash flow analysis of an automobile sector's company, which has recently installed in national territory and wants to rely with governmental incentives proposed by Inovar-Auto Program. The developed work evaluates the company's current cash flow stochastically from mathematical modeling of variables such as price, demand and interest rate through probability distributions with the assist of Crystal Ball software, a Microsoft Excel Add-in, generating different scenarios from Monte Carlo Simulation. As results probabilities situations have been evaluated until the end of the Inovar-Auto's conducted period, in 2017. Beside APV others indicator such as Internal Rate of Return (IRR) and payback period were estimated for the investment project. For APV a sampling distribution with only 0.057% of risk, IRR of 29% were obtained and estimated project payback period was 4.13 years
Resumo:
The automobile industry has a growing importance in the Brazilian economic environment. The industry moves a huge chain that encompasses manufacturers, suppliers of raw materials, auto parts dealers, gas stations, insurance companies, repair shops, tire stores, media companies, advertising agencies, among others. Because of this importance in the current economic environment in Brazil, the federal government, through Law No. 12715 of 17 December 2012 established a Program for the Promotion of Innovation and Densification in the Productive Chain of Motor Vehicles called INOVAR-AUTO in order to support technological development, innovation, safety, environmental protection, energy efficiency and quality of cars, trucks, buses and auto parts. The specific purpose of this study, a simulation for discussion of the viability of the program implementation using the Monte Carlo Simulation combined with the Cash-Flow-at-Risk was performed. To this end, an exploratory and documentary literature on the subject was held as well as a case study in a automobile company of Japanese origin
Resumo:
Introdução: Áreas contaminadas por agentes químicos perigosos em regiões urbanas representam riscos importantes à saúde humana e ao ambiente. Vila Carioca, localizada na cidade de São Paulo, é uma área contaminada por pesticidas organoclorados considerada crítica, pela magnitude da contaminação, pela presença de pessoas residentes e pela complexidade de fontes da contaminação. Vários estudos de riscos já foram realizados por uma das empresas contaminadoras, no entanto, ainda há muita incerteza e controvérsias sobre os riscos à saúde da população. Objetivo: Avaliar o incremento de risco de câncer no tempo de vida para população exposta por meio de uma avaliação probabilística. Método: Foram utilizados dados secundários das contaminações obtidos nos estudos de riscos efetuados pela empresa produtora de pesticidas organoclorados e também em documentos oficiais dos órgãos de saúde e meio ambiente do Estado de São Paulo, resultantes do monitoramento da água e do solo na área residencial no período de 1997 a 2012, para 335 substâncias. Foram selecionadas substâncias carcinogênicas presentes na água subterrânea e solo com melhor conjunto de dados. Para a avaliação probabilística foi empregado o método de simulação de Monte Carlo, por meio do software comercial ModelRisk. Foram utilizados os métodos recomendados pela United States Environmental Protection Agency para a avaliação de risco de exposição dérmica e de incremento de riscos de câncer para substâncias mutagênicas. Foram consideradas a ingestão de água e solo, e contato dérmico com água. Resultados: O incremento de risco de câncer no tempo de vida (IRLT) foi de 4,7x10-3 e 4,1x10-2 para o percentil 50% e 95%, respectivamente. As rotas de exposição mais importantes foram ingestão e contato dérmico com a água subterrânea, seguido da ingestão de solo. O grupo etário que apresentou maior risco foi o das crianças de 0 a 2 anos de idade. Conclusão: Os riscos estimados são superiores aos valores considerados toleráveis. A avaliação realizada foi conservativa, mas ressalta-se que a restrição do uso da água subterrânea deve ser mantida e que a população deve ser devidamente informada dos riscos envolvidos na área, em especial, relacionados ao solo contaminado
Resumo:
Os controladores eletrônicos de pulverização visam minimizar a variação das taxas de insumos aplicadas no campo. Eles fazem parte de um sistema de controle, e permitem a compensação da variação de velocidade de deslocamento do pulverizador durante a operação. Há vários tipos de controladores eletrônicos de pulverização disponíveis no mercado e uma das formas de selecionar qual o mais eficiente nas mesmas condições, ou seja, em um mesmo sistema de controle, é quantificar o tempo de resposta do sistema para cada controlador específico. O objetivo desse trabalho foi estimar os tempos de resposta para mudanças de velocidade de um sistema eletrônico de pulverização via modelos de regressão não lineares, estes, resultantes da soma de regressões lineares ponderadas por funções distribuição acumulada. Os dados foram obtidos no Laboratório de Tecnologia de Aplicação, localizado no Departamento de Engenharia de Biossistemas da Escola Superior de Agricultura \"Luiz de Queiroz\", Universidade de São Paulo, no município de Piracicaba, São Paulo, Brasil. Os modelos utilizados foram o logístico e de Gompertz, que resultam de uma soma ponderada de duas regressões lineares constantes com peso dado pela função distribuição acumulada logística e Gumbell, respectivamente. Reparametrizações foram propostas para inclusão do tempo de resposta do sistema de controle nos modelos, com o objetivo de melhorar a interpretação e inferência estatística dos mesmos. Foi proposto também um modelo de regressão não linear difásico que resulta da soma ponderada de regressões lineares constantes com peso dado pela função distribuição acumulada Cauchy seno hiperbólico exponencial. Um estudo de simulação foi feito, utilizando a metodologia de Monte Carlo, para avaliar as estimativas de máxima verossimilhança dos parâmetros do modelo.
Resumo:
No último século, houve grande avanço no entendimento das interações das radiações com a matéria. Essa compreensão se faz necessária para diversas aplicações, entre elas o uso de raios X no diagnóstico por imagens. Neste caso, imagens são formadas pelo contraste resultante da diferença na atenuação dos raios X pelos diferentes tecidos do corpo. Entretanto, algumas das interações dos raios X com a matéria podem levar à redução da qualidade destas imagens, como é o caso dos fenômenos de espalhamento. Muitas abordagens foram propostas para estimar a distribuição espectral de fótons espalhados por uma barreira, ou seja, como no caso de um feixe de campo largo, ao atingir um plano detector, tais como modelos que utilizam métodos de Monte Carlo e modelos que utilizam aproximações analíticas. Supondo-se um espectro de um feixe primário que não interage com nenhum objeto após sua emissão pelo tubo de raios X, este espectro é, essencialmente representado pelos modelos propostos anteriormente. Contudo, considerando-se um feixe largo de radiação X, interagindo com um objeto, a radiação a ser detectada por um espectrômetro, passa a ser composta pelo feixe primário, atenuado pelo material adicionado, e uma fração de radiação espalhada. A soma destas duas contribuições passa a compor o feixe resultante. Esta soma do feixe primário atenuado, com o feixe de radiação espalhada, é o que se mede em um detector real na condição de feixe largo. O modelo proposto neste trabalho visa calcular o espectro de um tubo de raios X, em situação de feixe largo, o mais fidedigno possível ao que se medem em condições reais. Neste trabalho se propõe a discretização do volume de interação em pequenos elementos de volume, nos quais se calcula o espalhamento Compton, fazendo uso de um espectro de fótons gerado pelo Modelo de TBC, a equação de Klein-Nishina e considerações geométricas. Por fim, o espectro de fótons espalhados em cada elemento de volume é somado ao espalhamento dos demais elementos de volume, resultando no espectro total espalhado. O modelo proposto foi implementado em ambiente computacional MATLAB® e comparado com medições experimentais para sua validação. O modelo proposto foi capaz de produzir espectros espalhados em diferentes condições, apresentando boa conformidade com os valores medidos, tanto em termos quantitativos, nas quais a diferença entre kerma no ar calculado e kerma no ar medido é menor que 10%, quanto qualitativos, com fatores de mérito superiores a 90%.
Resumo:
A presença da Medicina Nuclear como modalidade de obtenção de imagens médicas é um dos principais procedimentos utilizados hoje nos centros de saúde, tendo como grande vantagem a capacidade de analisar o comportamento metabólico do paciente, traduzindo-se em diagnósticos precoces. Entretanto, sabe-se que a quantificação em Medicina Nuclear é dificultada por diversos fatores, entre os quais estão a correção de atenuação, espalhamento, algoritmos de reconstrução e modelos assumidos. Neste contexto, o principal objetivo deste projeto foi melhorar a acurácia e a precisão na análise de imagens de PET/CT via processos realísticos e bem controlados. Para esse fim, foi proposta a elaboração de uma estrutura modular, a qual está composta por um conjunto de passos consecutivamente interligados começando com a simulação de phantoms antropomórficos 3D para posteriormente gerar as projeções realísticas PET/CT usando a plataforma GATE (com simulação de Monte Carlo), em seguida é aplicada uma etapa de reconstrução de imagens 3D, na sequência as imagens são filtradas (por meio do filtro de Anscombe/Wiener para a redução de ruído Poisson caraterístico deste tipo de imagens) e, segmentadas (baseados na teoria Fuzzy Connectedness). Uma vez definida a região de interesse (ROI) foram produzidas as Curvas de Atividade de Entrada e Resultante requeridas no processo de análise da dinâmica de compartimentos com o qual foi obtida a quantificação do metabolismo do órgão ou estrutura de estudo. Finalmente, de uma maneira semelhante imagens PET/CT reais fornecidas pelo Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP) foram analisadas. Portanto, concluiu-se que a etapa de filtragem tridimensional usando o filtro Anscombe/Wiener foi relevante e de alto impacto no processo de quantificação metabólica e em outras etapas importantes do projeto em geral.
Resumo:
This work presents a new model for the Heterogeneous p-median Problem (HPM), proposed to recover the hidden category structures present in the data provided by a sorting task procedure, a popular approach to understand heterogeneous individual’s perception of products and brands. This new model is named as the Penalty-free Heterogeneous p-median Problem (PFHPM), a single-objective version of the original problem, the HPM. The main parameter in the HPM is also eliminated, the penalty factor. It is responsible for the weighting of the objective function terms. The adjusting of this parameter controls the way that the model recovers the hidden category structures present in data, and depends on a broad knowledge of the problem. Additionally, two complementary formulations for the PFHPM are shown, both mixed integer linear programming problems. From these additional formulations lower-bounds were obtained for the PFHPM. These values were used to validate a specialized Variable Neighborhood Search (VNS) algorithm, proposed to solve the PFHPM. This algorithm provided good quality solutions for the PFHPM, solving artificial generated instances from a Monte Carlo Simulation and real data instances, even with limited computational resources. Statistical analyses presented in this work suggest that the new algorithm and model, the PFHPM, can recover more accurately the original category structures related to heterogeneous individual’s perceptions than the original model and algorithm, the HPM. Finally, an illustrative application of the PFHPM is presented, as well as some insights about some new possibilities for it, extending the new model to fuzzy environments
Resumo:
In the last decades the study of integer-valued time series has gained notoriety due to its broad applicability (modeling the number of car accidents in a given highway, or the number of people infected by a virus are two examples). One of the main interests of this area of study is to make forecasts, and for this reason it is very important to propose methods to make such forecasts, which consist of nonnegative integer values, due to the discrete nature of the data. In this work, we focus on the study and proposal of forecasts one, two and h steps ahead for integer-valued second-order autoregressive conditional heteroskedasticity processes [INARCH (2)], and in determining some theoretical properties of this model, such as the ordinary moments of its marginal distribution and the asymptotic distribution of its conditional least squares estimators. In addition, we study, via Monte Carlo simulation, the behavior of the estimators for the parameters of INARCH(2) processes obtained using three di erent methods (Yule- Walker, conditional least squares, and conditional maximum likelihood), in terms of mean squared error, mean absolute error and bias. We present some forecast proposals for INARCH(2) processes, which are compared again via Monte Carlo simulation. As an application of this proposed theory, we model a dataset related to the number of live male births of mothers living at Riachuelo city, in the state of Rio Grande do Norte, Brazil.
Resumo:
In the last decades the study of integer-valued time series has gained notoriety due to its broad applicability (modeling the number of car accidents in a given highway, or the number of people infected by a virus are two examples). One of the main interests of this area of study is to make forecasts, and for this reason it is very important to propose methods to make such forecasts, which consist of nonnegative integer values, due to the discrete nature of the data. In this work, we focus on the study and proposal of forecasts one, two and h steps ahead for integer-valued second-order autoregressive conditional heteroskedasticity processes [INARCH (2)], and in determining some theoretical properties of this model, such as the ordinary moments of its marginal distribution and the asymptotic distribution of its conditional least squares estimators. In addition, we study, via Monte Carlo simulation, the behavior of the estimators for the parameters of INARCH(2) processes obtained using three di erent methods (Yule- Walker, conditional least squares, and conditional maximum likelihood), in terms of mean squared error, mean absolute error and bias. We present some forecast proposals for INARCH(2) processes, which are compared again via Monte Carlo simulation. As an application of this proposed theory, we model a dataset related to the number of live male births of mothers living at Riachuelo city, in the state of Rio Grande do Norte, Brazil.