865 resultados para Short-term energy
Resumo:
Sleep-disordered breathing represents a risk factor for cardiovascular morbidity and mortality and negatively affects short-term and long-term outcome after an ischemic stroke or transient ischemic attack. The effect of continuous positive airways pressure in patients with sleep-disordered breathing and acute cerebrovascular event is poorly known. The SAS CARE 1 study assesses the effects of sleep-disordered breathing on clinical evolution, vascular functions, and markers within the first three-months after an acute cerebrovascular event. The SAS CARE 2 assesses the effect of continuous positive airways pressure on clinical evolution, cardiovascular events, and mortality as well as vascular functions and markers at 12 and 24 months after acute cerebrovascular event.
Resumo:
This study analyzes short- and long-term skeletal relapse after mandibular advancement surgery and determines its contributing factors. Thirty-two consecutive patients were treated for skeletal Class II malocclusion during the period between 1986 and 1989. They all had combined orthodontic and surgical treatment with BSSO and rigid fixation excluding other surgery. Of these, 15 patients (47%) were available for a long-term cephalography in 2000. The measurement was performed based on the serial cephalograms taken preoperatively; 1 week, 6 months and 14 months postoperatively; and at the final evaluation after an average of 12 years. Mean mandibular advancement was 4.1 mm at B-point and 4.9 mm at pogonion. Representing surgical mandibular ramus displacement, gonion moved downwards 2 mm immediately after surgery. During the short-term postoperative period, mandibular corpus length decreased only 0.5 mm, indicating that there was no osteotomy slippage. After the first year of observation, skeletal relapse was 1.3 mm at B-point and pogonion. The relapse continued, reaching a total of 2.3 mm after 12 years, corresponding to 50% of the mandibular advancement. Mandibular ramus length continuously decreased 1 mm during the same observation period, indicating progressive condylar resorption. No significant relationship between the amount of initial surgical advancement and skeletal relapse was found. Preoperative high mandibulo-nasal plane (ML-NL) angle appears to be associated with long-term skeletal relapse.
Resumo:
In a cohort study among 2751 members (71.5% females) of the German and Swiss RLS patient organizations changes in restless legs syndrome (RLS) severity over time was assessed and the impact on quality of life, sleep quality and depressive symptoms was analysed. A standard set of scales (RLS severity scale IRLS, SF-36, Pittsburgh Sleep Quality Index and the Centre for Epidemiologic Studies Depression Scale) in mailed questionnaires was repeatedly used to assess RLS severity and health status over time and a 7-day diary once to assess short-term variations. A clinically relevant change of the RLS severity was defined by a change of at least 5 points on the IRLS scale. During 36 months follow-up minimal improvement of RLS severity between assessments was observed. Men consistently reported higher severity scores. RLS severity increased with age reaching a plateau in the age group 45-54 years. During 3 years 60.2% of the participants had no relevant (±5 points) change in RLS severity. RLS worsening was significantly related to an increase in depressive symptoms and a decrease in sleep quality and quality of life. The short-term variation showed distinctive circadian patterns with rhythm magnitudes strongly related to RLS severity. The majority of participants had a stable course of severe RLS over three years. An increase in RLS severity was accompanied by a small to moderate negative, a decrease by a small positive influence on quality of life, depressive symptoms and sleep quality.
Resumo:
Previous research agrees that approach goals have positive effects whereas avoidance goals have negative effects on performance. By contrast, the present chapter looks at the conditions under which even avoidance goals may have positive effects on performance. We will first review the previous research that supports the positive consequences of avoidance goals. Then we will argue that the positive and negative consequences of approach and avoidance goals on performance depend on an individual‘s neuroticism level and the time frame of their goal striving. Because neuroticism is positively related to avoidance goals, we assume that individuals with high levels of neuroticism may derive some benefits from avoidance goals. We have specified this assumption by hypothesizing that the fit between an individual‘s level of neuroticism and their avoidance goals leads to favorable consequences in the short term – but to negative outcomes in the long run. A short-term, experimental study with employees and a long-term correlative field study with undergraduate students were conducted to test whether neuroticism moderates the short- and long-term effects of avoidance versus approach goals on performance. Experimental study 1 showed that individuals with a high level of neuroticism performed best in the short term when they were assigned to avoidance goals, whereas individuals with a low level of neuroticism performed best when pursuing approach goals. However, study 2 indicated that in the long run individuals with a high level of neuroticism performed worse when striving for avoidance goals, whereas individuals with a low level of neuroticism were not impaired at all by avoidance goals. In summary, the pattern of results supports the hypothesis that a fit between a high level of neuroticism and avoidance goals has positive consequences in the short term, but leads to negative outcomes in the long run. We strongly encourage further research to investigate short- and long-term effects of approach and avoidance goals on performance in conjunction with an individual‘s personality, which may moderate these effects.
Resumo:
In Switzerland 200’000 people suffer from congestive heart failure. Approximately 10’000 patients find themselves in an advanced state of the disease. When conservative treatment options are no longer available heart transplantation is the therapy of choice. Should this not be an option due to long waiting lists or medical issues assist device therapy becomes an option. Assist device therapy is separated in short-term and long-term support. Long-term support is nowadays performed with ventricular assist devices (VADs). The native heart is still in place and supported in parallel to the remaining function of the heart. The majority of patients are treated with a left ventricular assist device (LVAD). The right ventrical alone (RVAD) as well as bi-ventricular support (BiVAD) is rarely needed. The modern VADs are implantable and create a non-pulsative bloodflow. A percutaneous driveline enables energy supply and pump-control. Indication strategies for VAD implantations include bridge to transplant (short term support), bridge to candidacy and bridge to transplant. VADs become more and more a definite therapeutic option (destination therapy). VAD therapy might be a realistic alternative to organ transplantation in the near future.
Resumo:
Undergraduate research programs have been used as a tool to attract and retain student interest in science careers. This study evaluates the short and long-term benefits of a Summer Science Internship (SSI) at the University of Texas Health Science Center at Houston– School of Public Health – in Brownsville, Texas, by analyzing survey data from alumni. Questions assessing short-term program impact were aimed at three main topics, student: satisfaction with program, self-efficacy for science after completing the program, and perceived benefits. Long-term program impact was assessed by looking at student school attendance and college majors along with perceived links between SSI and future college plans. Students reported high program satisfaction, a significant increase in science self-efficacy and high perceived benefits. At the time data were collected for the study, one-hundred percent of alumni were enrolled in school (high school or college). The majority of students indicated they were interested in completing a science major/career, heavily influenced by their participation in the program.^
Resumo:
Increasing pCO2 (partial pressure of CO2 ) in an "acidified" ocean will affect phytoplankton community structure, but manipulation experiments with assemblages briefly acclimated to simulated future conditions may not accurately predict the long-term evolutionary shifts that could affect inter-specific competitive success. We assessed community structure changes in a natural mixed dinoflagellate bloom incubated at three pCO2 levels (230, 433, and 765 ppm) in a short-term experiment (2 weeks). The four dominant species were then isolated from each treatment into clonal cultures, and maintained at all three pCO2 levels for approximately 1 year. Periodically (4, 8, and 12 months), these pCO2 -conditioned clones were recombined into artificial communities, and allowed to compete at their conditioning pCO2 level or at higher and lower levels. The dominant species in these artificial communities of CO2 -conditioned clones differed from those in the original short-term experiment, but individual species relative abundance trends across pCO2 treatments were often similar. Specific growth rates showed no strong evidence for fitness increases attributable to conditioning pCO2 level. Although pCO2 significantly structured our experimental communities, conditioning time and biotic interactions like mixotrophy also had major roles in determining competitive outcomes. New methods of carrying out extended mixed species experiments are needed to accurately predict future long-term phytoplankton community responses to changing pCO2 .
Resumo:
Ocean acidification and greenhouse warming will interactively influence competitive success of key phytoplankton groups such as diatoms, but how long-term responses to global change will affect community structure is unknown. We incubated a mixed natural diatom community from coastal New Zealand waters in a short-term (two-week) incubation experiment using a factorial matrix of warming and/or elevated pCO2 and measured effects on community structure. We then isolated the dominant diatoms in clonal cultures and conditioned them for 1 year under the same temperature and pCO2 conditions from which they were isolated, in order to allow for extended selection or acclimation by these abiotic environmental change factors in the absence of interspecific interactions. These conditioned isolates were then recombined into 'artificial' communities modelled after the original natural assemblage and allowed to compete under conditions identical to those in the short-term natural community experiment. In general, the resulting structure of both the unconditioned natural community and conditioned 'artificial' community experiments was similar, despite differences such as the loss of two species in the latter. pCO2 and temperature had both individual and interactive effects on community structure, but temperature was more influential, as warming significantly reduced species richness. In this case, our short-term manipulative experiment with a mixed natural assemblage spanning weeks served as a reasonable proxy to predict the effects of global change forcing on diatom community structure after the component species were conditioned in isolation over an extended timescale. Future studies will be required to assess whether or not this is also the case for other types of algal communities from other marine regimes.
Resumo:
To investigate the proposed molecular characteristics of sugar-mediated repression of photosynthetic genes during plant acclimation to elevated CO2, we examined the relationship between the accumulation and metabolism of nonstructural carbohydrates and changes in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) gene expression in leaves of Arabidopsis thaliana exposed to elevated CO2. Long-term growth of Arabidopsis at high CO2 (1000 μL L−1) resulted in a 2-fold increase in nonstructural carbohydrates, a large decrease in the expression of Rubisco protein and in the transcript of rbcL, the gene encoding the large subunit of Rubisco (approximately 35–40%), and an even greater decline in mRNA of rbcS, the gene encoding the small subunit (approximately 60%). This differential response of protein and mRNAs suggests that transcriptional/posttranscriptional processes and protein turnover may determine the final amount of leaf Rubisco protein at high CO2. Analysis of mRNA levels of individual rbcS genes indicated that reduction in total rbcS transcripts was caused by decreased expression of all four rbcS genes. Short-term transfer of Arabidopsis plants grown at ambient CO2 to high CO2 resulted in a decrease in total rbcS mRNA by d 6, whereas Rubisco content and rbcL mRNA decreased by d 9. Transfer to high CO2 reduced the maximum expression level of the primary rbcS genes (1A and, particularly, 3B) by limiting their normal pattern of accumulation through the night period. The decreased nighttime levels of rbcS mRNA were associated with a nocturnal increase in leaf hexoses. We suggest that prolonged nighttime hexose metabolism resulting from exposure to elevated CO2 affects rbcS transcript accumulation and, ultimately, the level of Rubisco protein.
Resumo:
This paper reviews nitrogen (N) cycle of effluent-irrigated energy crop plantations, starting from wastewater treatment to thermo-chemical conversion processes. In wastewater, N compounds contribute to eutrophication and toxicity in water cycle. Removal of N via vegetative filters and specifically in short-rotation energy plantations, is a relatively new approach to managing nitrogenous effluents. Though combustion of energy crops is in principle carbon neutral, in practice, N content may contribute to NOx emissions with significant global warming potential. Intermediate pyrolysis produces advanced fuels while reducing such emissions. By operating at intermediate temperature (500°C), it retains most N in char as pyrrolic-N, pyridinic-N, quaternary-N and amines. In addition, biochar provides long-term sequestration of carbon in soils.
Resumo:
World and UK energy resources and use are reviewed and the role of energy conservation in energy policy identified. In considering various energy conservation measures, a distinction is made between energy intensive and non-intensive industries and also between direct and indirect uses of energy. Particular attention is given to the non-intensive user of energy. Energy use on one such industrial site has been studied to determine the most effective energy saving measures in the short term. Here it is estimated that over 65% of energy is consumed for indirect purposes, mainly for heating and lighting buildings. Emphasis is placed on energy auditing techniques and those energy saving measures requiring greater technical, economic and organisational resources to secure their implementation. Energy auditing techniques include the use of aerial thermography and snow formation surveys to detect heat losses. Qualitative and quantitative interpretations are carried out, but restricted mainly to evaluating building roof heat losses. From the energy auditing exercise, it is confirmed that the intermittent heating of buildings is the largest and most cost effective fuel saving measure. This was implemented on the site and a heat monitoring programme established to verify results. Industrial combined heat and power generation is investigated. A proposal for the site demonstrates that there are several obstacles to its successful implementation. By adopting an alternative financial rationale, a way of overcoming these obstacles is suggested. A useful by-product of the study is the classification of industrial sites according to the nature of industrial energy demand patterns. Finally, energy saving measures implemented on the site are quantlfied using comparative verification methods. Overall fuel savings of 13% are indicated. Cumulative savings in heating fuel amount to 26% over four years although heated area increased by approximately 25%.
Resumo:
PURPOSE: To assess the correlation between changes in corneal aberrations and the 2-year change in axial length in children fitted with orthokeratology (OK) contact lenses. METHODS: Thirty-one subjects 6 to 12 years of age and with myopia −0.75 to −4.00DS and astigmatism ≤1.00DC were fitted with OK. Measurements of axial length and corneal topography were taken at regular intervals over a 2-year period. Corneal topography at baseline and after 3 and 24 months of OK lens wear was used to derive higher-order corneal aberrations (HOA) that were correlated with OK-induced axial length changes at 2 years. RESULTS: Significant changes in C3, C4, C4, root mean square (RMS) secondary astigmatism and fourth and total HOA were found with both 3 and 24 months of OK lens wear in comparison with baseline (all P0.05). Coma angle of orientation changed significantly pre-OK in comparison with 3 and 24 months post-OK as well as secondary astigmatism angle of orientation pre-OK in comparison with 24 months post-OK (all P0.05). DISCUSSION: Short-term and long-term OK lens wear induces significant changes in corneal aberrations that are not significantly correlated with changes in axial elongation after 2-years.
Resumo:
The correct modelling of long- and short-term seasonality is a very interesting issue. The choice between the deterministic and stochastic modelling of trend and seasonality and their implications are as relevant as the case of deterministic and stochastic trends itself. The study considers the special case when the stochastic trend and seasonality do not evolve independently and the usual differencing filters do not apply. The results are applied to the day-ahead (spot) trading data of some main European energy exchanges (power and natural gas).
Resumo:
The correct modelling of long- and short-term seasonality is a very interesting issue. The choice between the deterministic and stochastic modelling of trend and seasonality and their implications are as relevant as the case of deterministic and stochastic trends itself. The study considers the special case when the stochastic trend and seasonality do not evolve independently and the usual differencing filters do not apply. The results are applied to the day-ahead (spot) trading data of some main European energy exchanges (power and natural gas).
Resumo:
Arctic soils store close to 14% of the global soil carbon. Most of arctic carbon is stored below ground in the permafrost. With climate warming the decomposition of the soil carbon could represent a significant positive feedback to global greenhouse warming. Recent evidence has shown that the temperature of the Arctic is already increasing, and this change is associated mostly with anthropogenic activities. Warmer soils will contribute to permafrost degradation and accelerate organic matter decay and thus increase the flux of carbon dioxide and methane into the atmosphere. Temperature and water availability are also important drivers of ecosystem performance, but effects can be complex and in opposition. Temperature and moisture changes can affect ecosystem respiration (ER) and gross primary productivity (GPP) independently; an increase in the net ecosystem exchange can be a result of either a decrease in ER or an increase in GPP. Therefore, understanding the effects of changes in ecosystem water and temperature on the carbon flux components becomes key to predicting the responses of the Arctic to climate change. The overall goal of this work was to determine the response of arctic systems to simulated climate change scenarios with simultaneous changes in temperature and moisture. A temperature and hydrological manipulation in a naturally-drained lakebed was used to assess the short-term effect of changes in water and temperature on the carbon cycle. Also, as part of International Tundra Experiment Network (ITEX), I determined the long-term effect of warming on the carbon cycle in a natural hydrological gradient established in the mid 90's. I found that the carbon balance is highly sensitive to short-term changes in water table and warming. However, over longer time periods, hydrological and temperature changed soil biophysical properties, nutrient cycles, and other ecosystem structural and functional components that down regulated GPP and ER, especially in wet areas.