909 resultados para Shell elements
Resumo:
Precision measurements of phenomena related to fermion mixing require the inclusion of higher order corrections in the calculation of corresponding theoretical predictions. For this, a complete renormalization scheme for models that allow for fermion mixing is highly required. The correct treatment of unstable particles makes this task difficult and yet, no satisfactory and general solution can be found in the literature. In the present work, we study the renormalization of the fermion Lagrange density with Dirac and Majorana particles in models that involve mixing. The first part of the thesis provides a general renormalization prescription for the Lagrangian, while the second one is an application to specific models. In a general framework, using the on-shell renormalization scheme, we identify the physical mass and the decay width of a fermion from its full propagator. The so-called wave function renormalization constants are determined such that the subtracted propagator is diagonal on-shell. As a consequence of absorptive parts in the self-energy, the constants that are supposed to renormalize the incoming fermion and the outgoing antifermion are different from the ones that should renormalize the outgoing fermion and the incoming antifermion and not related by hermiticity, as desired. Instead of defining field renormalization constants identical to the wave function renormalization ones, we differentiate the two by a set of finite constants. Using the additional freedom offered by this finite difference, we investigate the possibility of defining field renormalization constants related by hermiticity. We show that for Dirac fermions, unless the model has very special features, the hermiticity condition leads to ill-defined matrix elements due to self-energy corrections of external legs. In the case of Majorana fermions, the constraints for the model are less restrictive. Here one might have a better chance to define field renormalization constants related by hermiticity. After analysing the complete renormalized Lagrangian in a general theory including vector and scalar bosons with arbitrary renormalizable interactions, we consider two specific models: quark mixing in the electroweak Standard Model and mixing of Majorana neutrinos in the seesaw mechanism. A counter term for fermion mixing matrices can not be fixed by only taking into account self-energy corrections or fermion field renormalization constants. The presence of unstable particles in the theory can lead to a non-unitary renormalized mixing matrix or to a gauge parameter dependence in its counter term. Therefore, we propose to determine the mixing matrix counter term by fixing the complete correction terms for a physical process to experimental measurements. As an example, we calculate the decay rate of a top quark and of a heavy neutrino. We provide in each of the chosen models sample calculations that can be easily extended to other theories.
Resumo:
Study of K isomerism in the transfermium region around the deformed shells at N=152, Z=102, and N=162, Z=108 provides important information on the structure of heavy nuclei. Recent calculations suggest that the K-isomerism can enhance the stability of such nuclei against alpha emission and spontaneous fission. Nuclei showing K isomerism have neutron and proton orbitals with large spin projections on the symmetry axis which is due to multi quasiparticle states with aligned spins K. Quasi-particle states are formed by breaking pairs of nucleons and raising one or two nucleons in orbitals near the Fermi surface above the gap, forming high K (multi)quasi-particle states mainly at low excitation energies. Experimental examples are the recently studied two quasi-particle K isomers in 250,256-Fm, 254-No, and 270-Ds. Nuclei in this region, are produced with cross sections ranging from several nb up to µb, which are high enough for a detailed decay study. In this work, K isomerism in Sg and No isotopes was studied at the velocity filter SHIP of GSI, Darmstadt. The data were obtained by using a new data acquisition system which was developed and installed during this work. 252,254-No and 260-Sg were produced in fusion evaporation reactions of 48-Ca and 54-Cr projectiles with 206,208-Pb targets at beam energies close to the Coulomb barrier. A new K isomer was discovered in 252-No at excitation energy of 1.25 MeV, which decays to the ground state rotational band via gamma emission. It has a half-life of about 100 ms. The population of the isomeric state was about 20% of the ground state population. Detailed investigations were performed on 254-No in which two isomeric states (275 ms and 198 µs) were already discovered by R.-D. Herzberg, but due to the higher number of observed gamma decays more detailed information about the decay path of the isomers was obtained in the present work. In 260-Sg, we observed no statistically significant component with a half life different from that of the ground state. A comparison between experimental results and theoretical calculations of the single particle energies shows a fair agreement. The structure of the here studied nuclei is in particular important as single particle levels are involved which are relevant for the next shell closure expected to form the region of the shell stabilized superheavy elements at proton numbers 114, 120, or 126 and neutron number 184. K isomers, in particular, could be an ideal tool for the synthesis and study of these isotopes due to enhanced spontaneous fission life times which could result in higher alpha to spontaneous fission branching ratios and longer half lifes.
Resumo:
The aim of this thesis was to design, synthesize and develop a nanoparticle based system to be used as a chemosensor or as a label in bioanalytical applications. A versatile fluorescent functionalizable nanoarchitecture has been effectively produced based on the hydrolysis and condensation of TEOS in direct micelles of Pluronic® F 127, obtaining highly monodisperse silica - core / PEG - shell nanoparticles with a diameter of about 20 nm. Surface functionalized nanoparticles have been obtained in a one-pot procedure by chemical modification of the hydroxyl terminal groups of the surfactant. To make them fluorescent, a whole library of triethoxysilane fluorophores (mainly BODIPY based), encompassing the whole visible spectrum has been synthesized: this derivatization allows a high degree of doping, but the close proximity of the molecules inside the silica matrix leads to the development of self - quenching processes at high doping levels, with the concomitant fall of the fluorescence signal intensity. In order to bypass this parasite phenomenon, multichromophoric systems have been prepared, where highly efficient FRET processes occur, showing that this energy pathway is faster than self - quenching, recovering the fluorescence signal. The FRET efficiency remains very high even four dye nanoparticles, increasing the pseudo Stokes shift of the system, attractive feature for multiplexing analysis. These optimized nanoparticles have been successfully exploited in molecular imaging applications such as in vitro, in vivo and ex vivo imaging, proving themselves superior to conventional molecular fluorophores as signaling units.
Resumo:
Questa tesi si pone come obiettivo l'analisi delle componenti di sollecitazione statica di un serbatoio, in acciaio API 5L X52, sottoposto a carichi di flessione e pressione interna attraverso il programma agli elementi finiti PLCd4, sviluppato presso l'International Center for Numerical Methods in Engineering (CIMNE - Barcelona). Questo tipo di analisi rientra nel progetto europeo ULCF, il cui traguardo è lo studio della fatica a bassissimo numero di cicli per strutture in acciaio. Prima di osservare la struttura completa del serbatoio è stato studiato il comportamento del materiale per implementare all'interno del programma una nuova tipologia di curva che rappresentasse al meglio l'andamento delle tensioni interne. Attraverso il lavoro di preparazione alla tesi è stato inserito all'interno del programma un algoritmo per la distribuzione delle pressioni superficiali sui corpi 3D, successivamente utilizzato per l'analisi della pressione interna nel serbatoio. Sono state effettuate analisi FEM del serbatoio in diverse configurazioni di carico ove si è cercato di modellare al meglio la struttura portante relativa al caso reale di "full scale test". Dal punto di vista analitico i risultati ottenuti sono soddisfacenti in quanto rispecchiano un corretto comportamento del serbatoio in condizioni di pressioni molto elevate e confermano la bontà del programma nell'analisi computazionale.
Resumo:
matlab functions for the validation of push-off tests results
Resumo:
Implicazioni tettoniche ed estetiche delle logiche monoscocca integrate e stress lines analysis in architettura.
Resumo:
Nuclear masses are an important quantity to study nuclear structure since they reflect the sum of all nucleonic interactions. Many experimental possibilities exist to precisely measure masses, out of which the Penning trap is the tool to reach the highest precision. Moreover, absolute mass measurements can be performed using carbon, the atomic-mass standard, as a reference. The new double-Penning trap mass spectrometer TRIGA-TRAP has been installed and commissioned within this thesis work, which is the very first experimental setup of this kind located at a nuclear reactor. New technical developments have been carried out such as a reliable non-resonant laser ablation ion source for the production of carbon cluster ions and are still continued, like a non-destructive ion detection technique for single-ion measurements. Neutron-rich fission products will be available by the reactor that are important for nuclear astrophysics, especially the r-process. Prior to the on-line coupling to the reactor, TRIGA-TRAP already performed off-line mass measurements on stable and long-lived isotopes and will continue this program. The main focus within this thesis was on certain rare-earth nuclides in the well-established region of deformation around N~90. Another field of interest are mass measurements on actinoids to test mass models and to provide direct links to the mass standard. Within this thesis, the mass of 241-Am could be measured directly for the first time.
Resumo:
During the last years great effort has been devoted to the fabrication of superhydrophobic surfaces because of their self-cleaning properties. A water drop on a superhydrophobic surface rolls off even at inclinations of only a few degrees while taking up contaminants encountered on its way. rnSuperhydrophobic, self-cleaning coatings are desirable for convenient and cost-effective maintenance of a variety of surfaces. Ideally, such coatings should be easy to make and apply, mechanically resistant, and long-term stable. None of the existing methods have yet mastered the challenge of meeting all of these criteria.rnSuperhydrophobicity is associated with surface roughness. The lotus leave, with its dual scale roughness, is one of the most efficient examples of superhydrophobic surface. This thesis work proposes a novel technique to prepare superhydrophobic surfaces that introduces the two length scale roughness by growing silica particles (~100 nm in diameter) onto micrometer-sized polystyrene particles using the well-established Stöber synthesis. Mechanical resistance is conferred to the resulting “raspberries” by the synthesis of a thin silica shell on their surface. Besides of being easy to make and handle, these particles offer the possibility for improving suitability or technical applications: since they disperse in water, multi-layers can be prepared on substrates by simple drop casting even on surfaces with grooves and slots. The solution of the main problem – stabilizing the multilayer – also lies in the design of the particles: the shells – although mechanically stable – are porous enough to allow for leakage of polystyrene from the core. Under tetrahydrofuran vapor polystyrene bridges form between the particles that render the multilayer-film stable. rnMulti-layers are good candidate to design surfaces whose roughness is preserved after scratch. If the top-most layer is removed, the roughness can still be ensured by the underlying layer.rnAfter hydrophobization by chemical vapor deposition (CVD) of a semi-fluorinated silane, the surfaces are superhydrophobic with a tilting angle of a few degrees. rnrnrn
Resumo:
In recent years the advances in genomics allowed to understand the importance of Transposable Elements (TE) in the evolution of eukaryotic genomes. In this thesis I face two aspects of the TE impact on the in the animal kingdom. The first part is a comparison of the dynamics of the TE dynamics in three species of stick-insects of the Genus Bacillus. I produced three random genomic libraries of 200 Kbps for the three parental species of the taxon: a gonochoric population of Bacillus rossius (facultative parthenogenetic), Bacillus grandii (gonochoric) and Bacillus atticus (obligate parthenogenetic). The unisexual taxon Bacillus atticus does not shows dramatic differences in TE total content and activity with respect to Bacillus grandii and Bacillus rossius. This datum does not confirm the trend observed in other animal models in which unisexual taxa tend to repress the activity of TE to escape the extinction by accumulation of harmful mutations. In the second part I tried to add a contribute to the debate initiated in recent years about the possibility that a high TE content is linked to a high rate of speciation. I designed an evolutionary framework to establish the different rate of speciation among two or more taxa, then I compared TE dynamics considering the different rates of speciation. The species dataset comprises: 29 mammals, four birds, two fish and two insects. On the whole the majority of comparisons confirms the expected trend. In particular the amount of species analyzed in Mammalia allowed me to get a statistical support (p<0,05) of the fact that the TE activity of recently mobilized elements is positively related with the rate of speciation.
Resumo:
This thesis reports a study on the seismic response of two-dimensional squat elements and their effect on the behavior of building structures. Part A is devoted to the study of unreinforced masonry infills, while part B is focused on reinforced concrete sandwich walls. Part A begins with a comprehensive review of modelling techniques and code provisions for infilled frame structures. Then state-of-the practice techniques are applied for a real case to test the ability of actual modeling techniques to reproduce observed behaviors. The first developments towards a seismic-resistant masonry infill system are presented. Preliminary design recommendations for the seismic design of the seismic-resistant masonry infill are finally provided. Part B is focused on the seismic behavior of a specific reinforced concrete sandwich panel system. First, the results of in-plane psuudostatic cyclic tests are described. Refinements to the conventional modified compression field theory are introduced in order to better simulate the monotonic envelope of the cyclic response. The refinements deal with the constitutive model for the shotcrete in tension and the embedded bars. Then the hysteretic response of the panels is studied according to a continuum damage model. Damage state limits are identified. Design recommendations for the seismic design of the studied reinforced concrete sandwich walls are finally provided.
Resumo:
Among abiotic stresses, high salinity stress is the most severe environmental stress. High salinity exerts its negative impact mainly by disrupting the ionic and osmotic equilibrium of the cell. In saline soils, high levels of sodium ions lead to plant growth inhibition and even death. Salt tolerance in plants is a multifarious phenomenon involving a variety of changes at molecular, organelle, cellular, tissue as well as whole plant level. In addition, salt tolerant plants show a range of adaptations not only in morphological or structural features but also in metabolic and physiological processes that enable them to survive under extreme saline environments. The main objectives of my dissertation were understanding the main physiological and biomolecular features of plant responses to salinity in different genotypes of horticultural crops that are belonging to different families Solanaceae (tomato) and Cucurbitaceae (melon) and Brassicaceae (cabbage and radish). Several aspects of crop responses to salinity have been addressed with the final aim of combining elements of functional stress response in plants by using several ways for the assessment of plant stress perception that ranging from destructive measurements (eg. leaf area, relative growth rate, leaf area index, and total plant fresh and dry weight), to physiological determinations (eg. stomatal conductance, leaf gas exchanges, water use efficiency, and leaf water relation), to the determination of metabolite accumulation in plant tissue (eg. Proline and protein) as well as evaluation the role of enzymatic antioxidant capacity assay in scavenging reactive oxygen species that have been generated under salinized condition, and finally assessing the gene induction and up-down regulation upon salinization (eg. SOS pathway).
Resumo:
Relativistic effects need to be considered in quantum-chemical calculations on systems including heavy elements or when aiming at high accuracy for molecules containing only lighter elements. In the latter case, consideration of relativistic effects via perturbation theory is an attractive option. Among the available techniques, Direct Perturbation Theory (DPT) in its lowest order (DPT2) has become a standard tool for the calculation of relativistic corrections to energies and properties.In this work, the DPT treatment is extended to the next order (DPT4). It is demonstrated that the DPT4 correction can be obtained as a second derivative of the energy with respect to the relativistic perturbation parameter. Accordingly, differentiation of a suitable Lagrangian, thereby taking into account all constraints on the wave function, provides analytic expressions for the fourth-order energy corrections. The latter have been implemented at the Hartree-Fock level and within second-order Møller-Plesset perturbaton theory using standard analytic second-derivative techniques into the CFOUR program package. For closed-shell systems, the DPT4 corrections consist of higher-order scalar-relativistic effects as well as spin-orbit corrections with the latter appearing here for the first time in the DPT series.Relativistic corrections are reported for energies as well as for first-order electrical properties and compared to results from rigorous four-component benchmark calculations in order to judge the accuracy and convergence of the DPT expansion for both the scalar-relativistic as well as the spin-orbit contributions. Additionally, the importance of relativistic effects to the bromine and iodine quadrupole-coupling tensors is investigated in a joint experimental and theoretical study concerning the rotational spectra of CH2BrF, CHBrF2, and CH2FI.
Resumo:
Da die Langzeit-Radiotoxizität von abgebrannten Kernbrennstoffen von Plutonium und den minoren Actiniden dominiert wird, sind diese Elemente im Fokus der Untersuchungen bezüglich der Entsorgung der radioaktiven Abfälle.rnUm ein besseres Verständnis der Selektivität der Partitioning-Liganden BTP und BTBP bezüglich der Extraktion von trivalenten Actiniden zu erlangen, wurden die Komplexe, die diese mit Lanthaniden in octanolischer Lösung bilden charakterisiert. Das unterschiedliche Extraktionsverhalten der Lanthaniden untereinander konnte dabei auf unterschiedliche Präferenz zur Bildung von Ln(BTP)3-Komplexen abhängig vom Ionenradius der Lanthaniden zurückgeführt werden. Darüber hinaus konnte gezeigt werden, dass abhängig vom sterischen Anspruch der BTBP-Liganden in Eu(BTBP)2-Komplexen Nitratliganden in der ersten Koordinationssphäre gebunden werden. rnDa das Verhalten von Plutonium unter geochemischen Bedingungen von besonderem Interesse für die Risikoabschätzung von nuklearen Endlagern ist, widmet sich der zweite Teil der Arbeit dem Hydrolyse- und Kolloidbildungsverhalten von wässrigen Plutoniumlösungen in den Oxidationsstufen IV bis VI. Daher wurden die Lösungsspezies von sowohl Zirconium(IV) als Analogon für Plutonium(IV), als auch die von Uran(VI) und Plutonium(VI) direkt mittels massenspektrometrischer Methoden charakterisiert und quantifiziert. Darüber hinaus wurde die kinetische Hemmung der Reduktion von Pu(V) zu Pu(IV) und nachfolgender Kolloidbildung untersucht, welche sich durch oberflächeninduzierte Reduktion an kolloidalen Kristallisationskeimen deutlich beschleunigen lässt.rn
Resumo:
Die kollineare Laserspektroskopie hat sich in den vergangenen drei Jahrzehnten zur Bestimmung der Kernladungsradien mittelschwerer und schwerer kurzlebiger Atomkerne in ausgezeichneter Weise bewährt. Auf die Isotope sehr leichter Elemente konnte sie allerdings erst kürzlich erweitert werden. Dieser Bereich der Nuklidkarte ist von besonderem Interesse, denn die ersten ab-initio Modelle der Kernphysik, die den Aufbau eines Atomkerns basierend auf individuellen Nukleonen und realistischenWechselwirkungspotentialen beschreiben, sind gegenwärtig nur für die leichtesten Elemente anwendbar. Außerdem existiertrnin dieser Region eine besonders exotische Form von Atomkernen, die sogenanntenrnHalokerne. Die Isotopenkette der Berylliumisotope zeichnet sich durch das Auftreten des Ein-Neutronen Halokerns 11Be und des Zwei- oder Vier-Neutronen-Halos 14Be aus. Dem Isotop 12Be kommt durch seine Position zwischen diesen beiden Exoten und den im Schalenmodell erwarteten magischen Schalenabschluss N = 8 eine besondere Bedeutung zu.rnIm Rahmen dieser Arbeit wurden mehrere frequenzstabilisierte Lasersysteme für die kollineare Laserspektroskopie aufgebaut. An TRIGA-SPEC stehen nun unter anderem ein frequenzverdoppeltes Diodenlasersystem mit Trapezverstärker und frequenzkammstabilisierter Titan-Saphirlaser mit Frequenzverdopplungsstufe für die Spektroskopie an refraktären Elementen oberhalb von Molybdän zur Verfügung, die für erste Testexperimente eingesetzt wurden. Außerdem wurde die effiziente Frequenzvervierfachung eines Titan-Saphirlasers demonstriert. An ISOLDE/CERN wurde ein frequenzkammstabilisierter und ein jodstabilisierter Farbstofflaser installiert und für die Laserspektroskopie an 9,10,11,12Be eingesetzt. Durch das verbesserte Lasersystem und den Einsatz eines verzögerten Koinzidenznachweises für Photonen und Ionen gelang es die Empfindlichkeitrnder Berylliumspektroskopie um mehr als zwei Größenordnungen zu steigern und damit die früheren Messungen an 7−11Be erstmals auf das Isotop 12Be auszuweiten. Außerdem wurde die Genauigkeit der absoluten Übergangsfrequenzen und der Isotopieverschiebungen der Isotope 9,10,11Be signifikant verbessert.rnDurch den Vergleich mit Ergebnissen des Fermionic Molecular Dynamics Modells kann der Trend der Ladungsradien der leichteren Isotope durch die ausgeprägte Clusterstruktur der Berylliumkerne erklärt werden. Für 12Be wird ersichtlich, dass der Grundzustand durch eine (sd)2 Konfiguration statt der vom Schalenmodell erwarteten p2 Konfiguration dominiert wird. Dies ist ein klares Indiz für das bereits zuvor beobachtete Verschwinden des N = 8 Schalenabschlusses bei 12Be.