968 resultados para Severe food restriction
Resumo:
Brevetoxin uptake was analyzed in 2 common planktivorous fish that are likely foodweb vectors for dolphin mortality events associated with brevetoxin-producing red tides. Fish were exposed to brevetoxin-producing Karenia brevis for 10 h under conditions previously reported to produce optimal uptake of toxin in blood after oral exposure. Striped mullet Mugil cephalus were exposed to a low dose of brevetoxin, and uptake and depuration by specific organs were evaluated over a 2 mo period. Atlantic menhaden Brevoortia tyrannus specimens were used to characterize a higher brevetoxin dose uptake into whole body components and evaluate depuration over 1 mo. We found a high uptake of toxin by menhaden, with a body to water ratio of 57 after a 10 h exposure and a slow elimination with a half life (t1/2) of 24 d. Elimination occurred rapidly from the intestine (t1/2 < 1 wk) and muscle (t1/2 ≈ 1 wk) compartments and redistributed to liver which continued to accumulate body stores of toxin for 4 wk. The accumulation and elimination characteristics of the vectoring capacity of these 2 fish species are interpreted in relation to data from the Florida Panhandle dolphin mortality event of 2004. We show that due to slow elimination rate of brevetoxin in planktivorous fish, brevetoxin-related dolphin mortality events may occur without evidence of a concurrent harmful algal bloom event.
Resumo:
Benthic food webs often derive a significant fraction of their nutrient inputs from phytoplankton in the overlying waters. If the phytoplankton include harmful algal species like Pseudo-nitzschia australis, a diatom capable of producing the neurotoxin domoic acid (DA), the benthic food web can become a depository for phycotoxins. We tested the general hypothesis that DA contaminates benthic organisms during local blooms of P. australis, a widespread toxin producer along the US west coast. To test for trophic transfer and uptake of DA into the benthic food web, we sampled 8 benthic species comprising 4 feeding groups: filter feeders (Emerita analoga and Urechis caupo); a predator (Citharichthys sordidus); scavengers (Nassarius fossatus and Pagurus samuelis) and deposit feeders (Neotrypaea californiensis, Dendraster excentricus and Olivella biplicata). Sampling occurred before, during and after blooms of P. australis in Monterey Bay, CA, USA during 2000 and 2001. DA was detected in all 8 species, with contamination persisting over variable time scales. Maximum DA levels in N. fossatus (674 ppm), E. analoga (278 ppm), C. sordidus (515 ppm), N. californiensis (145 ppm), P. samuelis (56 ppm), D. excentricus (15 ppm) and O. biplicata (3 ppm) coincided with P. australis blooms, while DA levels in U. caupo remained above 200 ppm (max. = 751 ppm) throughout the study period. DA in 6 species exceeded levels thought to be safe for higher level consumers (i.e. ≥20 ppm) and thus is likely to have deleterious effects on marine birds, sea lions and the endangered California sea otter, known to prey upon these benthic species.
Resumo:
Algae are the most abundant photosynthetic organisms in marine ecosystems and are essential components of marine food webs. Harmful algal bloom or “HAB” species are a small subset of algal species that negatively impact humans or the environment. HABs can pose health hazards for humans or animals through the production of toxins or bioactive compounds. They also can cause deterioration of water quality through the buildup of high biomass, which degrades aesthetic, ecological, and recreational values. Humans and animals can be exposed to marine algal toxins through their food, the water in which they swim, or sea spray. Symptoms from toxin exposure range from neurological impairment to gastrointestinal upset to respiratory irritation, in some cases resulting in severe illness and even death. HABs can also result in lost revenue for coastal economies dependent on seafood harvest or tourism, disruption of subsistence activities, loss of community identity tied to coastal resource use, and disruption of social and cultural practices. Although economic impact assessments to date have been limited in scope, it has been estimated that the economic effects of marine HABs in U.S. communities amount to at least $82 million per year including lost income for fisheries, lost recreational opportunities, decreased business in tourism industries, public health costs of illness, and expenses for monitoring and management. As reviewed in the report, Harmful Algal Research and Response: A Human Dimensions Strategy1, the sociocultural impacts of HABs may be significant, but remain mostly undocumented.
Resumo:
An ecosystem approach to fisheries management requires an understanding of the impact of predatory fishes on the underlying prey resources. Defining trophic connections and measuring rates of food consumption by apex predators lays the groundwork for gaining insight into the role of predators and commercial fisheries in influencing food web structure and ecosystem dynamics.We analyzed the stomach contents of 545 common dolphinfish (Coryphaena hippurus) sampled from 74 sets of tuna purse-seine vessels fishing in the eastern Pacific Ocean (EPO) over a 22-month period. Stomach fullness of these dolphinfish and digestion state of the prey indicated that diel feeding periodicity varied by area and may be related to the digestibility and energy content of the prey. Common dolphinfish in the EPO appear to feed at night, as well as during the daytime. We analyzed prey importance by weight, numbers, and frequency of occurrence for five regions of the EPO. Prey importance varied by area. Flyingfishes, epipelagic cephalopods, tetraodontiform fishes, several mesopelagic fishes, Auxis spp., and gempylid fishes predominated in the diet. Ratios of prey length to predator length ranged from 0.014 to 0.720. Consumption-rate estimates averaged 5.6% of body weight per day. Stratified by sex, area, and length class, daily rations ranged up to 9.6% for large males and up to 19.8% for small dolphinfish in the east area (0–15°N, 111°W–coastline). Because common dolphinfish exert substantial predation pressure on several important prey groups, we concluded that their feeding ecology provides important clues to the pelagic food web and ecosystem structure in the EPO.
Resumo:
Status of the southeastern U.S. stock of red porgy (Pagrus pagrus) was estimated from fishery-dependent and fishery-independent data, 1972–97. Annual population numbers and fishing mortality rates at age were estimated from virtual population analysis (VPA) calibrated with fishery-independent data. For the VPA, a primary matrix of catch at age was based on age-length keys from fishery-independent samples; an alternate matrix was based on fishery-dependent keys. Additional estimates of stock status were obtained from a surplus-production model, also calibrated with fishery-independent indices of abundance. Results describe a dramatic increase in exploitation of this stock and concomitant decline in abundance. Estimated fully recruited fishing mortality rate (F) from the primary catch matrix increased from 0.10/yr in 1975 to 0.88/yr in 1997, and estimated static spawning potential ratio (SPR) declined from about 67% to about 18%. Estimated recruitment to age 1 declined from a peak of 3.0 million fish in 1973–74 to 94,000 fish in 1997, a decline of 96.9%. Estimated spawning-stock biomass declined from a peak of 3530 t in 1979 to 397 t in 1997, a decline of 88.8%. Results from the alternate catch matrix were similar. Retrospective patterns in the VPA suggest that the future estimates of this population decline will be severe, but may be less than present estimates. Long-term and marked declines in recruitment, spawning stock, and catch per unit of effort (both fishery-derived and fishery-independent)are consistent with severe overexploitation during a period of reduced recruitment. Although F prior to 1995 has generally been estimated at or below the current management criterion for overfishing (F equivalent to SPR=35%), the recent spawning-stock biomass is well below the biomass that could support maximum sustainable yield. Significant reductions in fishing mortality will be needed for rebuilding the southeastern U.S. stock.
Resumo:
There has been much recent interest in the effects of fishing on habitat and non-target species, as well as in protecting certain areas of the seabed from these effects (e.g. Jennings and Kaiser, 1998; Benaka, 1999; Langton and Auster, 1999; Kaiser and de Groot, 2000). As part of an effort to determine the effectiveness of marine closed areas in promoting recovery of commercial species (e.g. haddock, Melanogrammus aegelfinus; sea scallops, Placopecten magellanicus; yellowtail flounder, Limanda ferruginea; cod, Gadus morhua), nontarget species, and habitat, a multidisciplinary research cruise was conducted by the Northeast Fisheries Science Center (NEFSC), National Marine Fisheries Service. The cruise was conducted in closed area II (CA-II) of the eastern portion of Georges Bank during 19–29 June 2000 (Fig. 1). The area has historically produced high landings of scallops but was closed in 1994 principally for groundfish recovery (Fogarty and Murawski, 1998). The southern portion of the area was reopened to scallop fishing from 15 June to 12 November 1999, and again from 15 June to 15 August 2000. While conducting our planned sampling, we observed scallop viscera (the noncalcareous remains from scallops that have been shucked by commercial fishermen at sea) in the stomachs of several fish species at some of these locations, namely little skate (Raja erinacea), winter skate (R. ocellata), red hake (Urophycis chuss), and longhorn sculpin (Myoxocephalus octodecemspinosus). We examined the stomach contents of a known scavenger, the longhorn sculpin, to evaluate and document the extent of this phenomenon.
Resumo:
The Republic of Kiribati is a vast South Pacific island group with one of the largest exclusive economic zones (EEZs) in the world. Kiribati waters support a wealth of marine fisheries activities. These activities occur in oceanic, coastal and inshore environments and range from large, foreign, industrial-scale oceanic fishing operations to small-scale, domestic, inshore subsistence fisheries, aquaculture and recreational fisheries. Kiribati has developed a framework of domestic and international governance arrangements that are designed to sustainably manage its wealth of marine resources. The report provides background information for fisheries projects in Kiribati that aim to build food security, improve artisanal livelihoods and strengthen community engagement in fisheries governance. It provides information on the current status of Kiribati fishery resources (oceanic and coastal), their current governance and future challenges. Fish and fisher alike pay little heed to maritime boundaries and bureaucratic distinctions. This report covers both sides of the oceanic/coastal boundary because of the I-Kiribati communities’ interest in oceanic fisheries such as tuna and their heavy dependence on its fisheries resources for food security and economic development. The report focuses on two potential pilot sites for community-based fisheries management projects: North Tarawa and Butaritari.
Resumo:
This study provides an overview of the aquaculture sector in Ghana. It assesses the actual and potential contribution of aquaculture to poverty reduction and food security, and identifies enabling conditions for and drivers of the development of Ghana’s aquaculture sector. The study uses data collected from a variety of primary and secondary sources, including key informant interviews with actors within the aquaculture sector and relevant secondary literature.
Resumo:
Food and feeding habits of Schizothorax longipinnis inhabiting river Jhelum were studied by observing the gut contents of 225 fishes. The species is found to be illiophagic and herbivore in nature, chiefly feeding on decayed organic matter (54.2%), sand and mud (25.7%), food of plant and animal origin (20.1%). Correlation between food intake and various size groups for different seasons have been discussed in details.
Resumo:
Thirteen morphometric and seven meristic characters, length-weight relationship and food and feeding habits of Otolithoides biauritus of Bombay coast (Maharashtra, India) were studied. Compared morphometric characters revealed positive allometric growth and high correlation ("r" ranging 0.898 - 0.996) between each other. Meristic characters were observed to be B sub(vii), D sub(1) 8-10, D sub(2) 27-31, P 17-20, V 5-7 and 7-10. Number of gill rackers on the first left gill arch ranged from 15 to 19. Length-weight relationship for both sexes together worked out to be W = 0.026, L super(2.646). The species is a predator, feeding mainly on motile Acetes, small fish and Loligo in order of preference.
Resumo:
Megalaspis cordyla as one of the shoaling commercially important pelagic fish in the Northwest coast of India. The study on food and feeding habits of this fish revealed that it is predominantly a carnivorous species feeding primarily on sergestied shrimps like Acetes indicus and small fishes such as Stolephorus species. In addition it feeds on juveniles of Trichiurus, Apogon, Coilia, Sardinella, Nemipterus, Thryssa, and sciaenids. The food of M. cordyla also comprises the young ones of molluscs, especially Loligo and Sepia and occasionally ostracods. The choice food is Acetes indicus.