936 resultados para Seismic input
Resumo:
Human use of the oceans is increasingly in conflict with conservation of endangered species. Methods for managing the spatial and temporal placement of industries such as military, fishing, transportation and offshore energy, have historically been post hoc; i.e. the time and place of human activity is often already determined before assessment of environmental impacts. In this dissertation, I build robust species distribution models in two case study areas, US Atlantic (Best et al. 2012) and British Columbia (Best et al. 2015), predicting presence and abundance respectively, from scientific surveys. These models are then applied to novel decision frameworks for preemptively suggesting optimal placement of human activities in space and time to minimize ecological impacts: siting for offshore wind energy development, and routing ships to minimize risk of striking whales. Both decision frameworks relate the tradeoff between conservation risk and industry profit with synchronized variable and map views as online spatial decision support systems.
For siting offshore wind energy development (OWED) in the U.S. Atlantic (chapter 4), bird density maps are combined across species with weights of OWED sensitivity to collision and displacement and 10 km2 sites are compared against OWED profitability based on average annual wind speed at 90m hub heights and distance to transmission grid. A spatial decision support system enables toggling between the map and tradeoff plot views by site. A selected site can be inspected for sensitivity to a cetaceans throughout the year, so as to capture months of the year which minimize episodic impacts of pre-operational activities such as seismic airgun surveying and pile driving.
Routing ships to avoid whale strikes (chapter 5) can be similarly viewed as a tradeoff, but is a different problem spatially. A cumulative cost surface is generated from density surface maps and conservation status of cetaceans, before applying as a resistance surface to calculate least-cost routes between start and end locations, i.e. ports and entrance locations to study areas. Varying a multiplier to the cost surface enables calculation of multiple routes with different costs to conservation of cetaceans versus cost to transportation industry, measured as distance. Similar to the siting chapter, a spatial decisions support system enables toggling between the map and tradeoff plot view of proposed routes. The user can also input arbitrary start and end locations to calculate the tradeoff on the fly.
Essential to the input of these decision frameworks are distributions of the species. The two preceding chapters comprise species distribution models from two case study areas, U.S. Atlantic (chapter 2) and British Columbia (chapter 3), predicting presence and density, respectively. Although density is preferred to estimate potential biological removal, per Marine Mammal Protection Act requirements in the U.S., all the necessary parameters, especially distance and angle of observation, are less readily available across publicly mined datasets.
In the case of predicting cetacean presence in the U.S. Atlantic (chapter 2), I extracted datasets from the online OBIS-SEAMAP geo-database, and integrated scientific surveys conducted by ship (n=36) and aircraft (n=16), weighting a Generalized Additive Model by minutes surveyed within space-time grid cells to harmonize effort between the two survey platforms. For each of 16 cetacean species guilds, I predicted the probability of occurrence from static environmental variables (water depth, distance to shore, distance to continental shelf break) and time-varying conditions (monthly sea-surface temperature). To generate maps of presence vs. absence, Receiver Operator Characteristic (ROC) curves were used to define the optimal threshold that minimizes false positive and false negative error rates. I integrated model outputs, including tables (species in guilds, input surveys) and plots (fit of environmental variables, ROC curve), into an online spatial decision support system, allowing for easy navigation of models by taxon, region, season, and data provider.
For predicting cetacean density within the inner waters of British Columbia (chapter 3), I calculated density from systematic, line-transect marine mammal surveys over multiple years and seasons (summer 2004, 2005, 2008, and spring/autumn 2007) conducted by Raincoast Conservation Foundation. Abundance estimates were calculated using two different methods: Conventional Distance Sampling (CDS) and Density Surface Modelling (DSM). CDS generates a single density estimate for each stratum, whereas DSM explicitly models spatial variation and offers potential for greater precision by incorporating environmental predictors. Although DSM yields a more relevant product for the purposes of marine spatial planning, CDS has proven to be useful in cases where there are fewer observations available for seasonal and inter-annual comparison, particularly for the scarcely observed elephant seal. Abundance estimates are provided on a stratum-specific basis. Steller sea lions and harbour seals are further differentiated by ‘hauled out’ and ‘in water’. This analysis updates previous estimates (Williams & Thomas 2007) by including additional years of effort, providing greater spatial precision with the DSM method over CDS, novel reporting for spring and autumn seasons (rather than summer alone), and providing new abundance estimates for Steller sea lion and northern elephant seal. In addition to providing a baseline of marine mammal abundance and distribution, against which future changes can be compared, this information offers the opportunity to assess the risks posed to marine mammals by existing and emerging threats, such as fisheries bycatch, ship strikes, and increased oil spill and ocean noise issues associated with increases of container ship and oil tanker traffic in British Columbia’s continental shelf waters.
Starting with marine animal observations at specific coordinates and times, I combine these data with environmental data, often satellite derived, to produce seascape predictions generalizable in space and time. These habitat-based models enable prediction of encounter rates and, in the case of density surface models, abundance that can then be applied to management scenarios. Specific human activities, OWED and shipping, are then compared within a tradeoff decision support framework, enabling interchangeable map and tradeoff plot views. These products make complex processes transparent for gaming conservation, industry and stakeholders towards optimal marine spatial management, fundamental to the tenets of marine spatial planning, ecosystem-based management and dynamic ocean management.
Resumo:
The full-scale base-isolated structure studied in this dissertation is the only base-isolated building in South Island of New Zealand. It sustained hundreds of earthquake ground motions from September 2010 and well into 2012. Several large earthquake responses were recorded in December 2011 by NEES@UCLA and by GeoNet recording station nearby Christchurch Women's Hospital. The primary focus of this dissertation is to advance the state-of-the art of the methods to evaluate performance of seismic-isolated structures and the effects of soil-structure interaction by developing new data processing methodologies to overcome current limitations and by implementing advanced numerical modeling in OpenSees for direct analysis of soil-structure interaction.
This dissertation presents a novel method for recovering force-displacement relations within the isolators of building structures with unknown nonlinearities from sparse seismic-response measurements of floor accelerations. The method requires only direct matrix calculations (factorizations and multiplications); no iterative trial-and-error methods are required. The method requires a mass matrix, or at least an estimate of the floor masses. A stiffness matrix may be used, but is not necessary. Essentially, the method operates on a matrix of incomplete measurements of floor accelerations. In the special case of complete floor measurements of systems with linear dynamics, real modes, and equal floor masses, the principal components of this matrix are the modal responses. In the more general case of partial measurements and nonlinear dynamics, the method extracts a number of linearly-dependent components from Hankel matrices of measured horizontal response accelerations, assembles these components row-wise and extracts principal components from the singular value decomposition of this large matrix of linearly-dependent components. These principal components are then interpolated between floors in a way that minimizes the curvature energy of the interpolation. This interpolation step can make use of a reduced-order stiffness matrix, a backward difference matrix or a central difference matrix. The measured and interpolated floor acceleration components at all floors are then assembled and multiplied by a mass matrix. The recovered in-service force-displacement relations are then incorporated into the OpenSees soil structure interaction model.
Numerical simulations of soil-structure interaction involving non-uniform soil behavior are conducted following the development of the complete soil-structure interaction model of Christchurch Women's Hospital in OpenSees. In these 2D OpenSees models, the superstructure is modeled as two-dimensional frames in short span and long span respectively. The lead rubber bearings are modeled as elastomeric bearing (Bouc Wen) elements. The soil underlying the concrete raft foundation is modeled with linear elastic plane strain quadrilateral element. The non-uniformity of the soil profile is incorporated by extraction and interpolation of shear wave velocity profile from the Canterbury Geotechnical Database. The validity of the complete two-dimensional soil-structure interaction OpenSees model for the hospital is checked by comparing the results of peak floor responses and force-displacement relations within the isolation system achieved from OpenSees simulations to the recorded measurements. General explanations and implications, supported by displacement drifts, floor acceleration and displacement responses, force-displacement relations are described to address the effects of soil-structure interaction.
Resumo:
As an alternative to transverse spiral or hoop steel reinforcement, fiber reinforced polymers (FRPs) were introduced to the construction industry in the 1980's. The concept of concrete-filled FRP tube (CFFT) has raised great interest amongst researchers in the last decade. FRP tube can act as a pour form, protective jacket, and shear and flexural reinforcement for concrete. However, seismic performance of CFFT bridge substructure has not yet been fully investigated. Experimental work in this study included four two-column bent tests, several component tests and coupon tests. Four 1/6-scale bridge pier frames, consisting of a control reinforced concrete frame (RCF), glass FRP-concrete frame (GFF), carbon FRP-concrete frame (CFF), and hybrid glass/carbon FRP-concrete frame (HFF) were tested under reverse cyclic lateral loading with constant axial loads. Specimen GFF did not show any sign of cracking at a drift ratio as high as 15% with considerable loading capacity, whereas Specimen CFF showed that lowest ductility with similar load capacity as in Specimen GFF. FRP-concrete columns and pier cap beams were then cut from the pier frame specimens, and were tested again in three point flexure under monotonic loading with no axial load. The tests indicated that bonding between FRP and concrete and yielding of steel both affect the flexural strength and ductility of the components. The coupon tests were carried out to establish the tensile strength and elastic modulus of each FRP tube and the FRP mold for the pier cap beam in the two principle directions of loading. A nonlinear analytical model was developed to predict the load-deflection responses of the pier frames. The model was validated against test results. Subsequently, a parametric study was conducted with variables such as frame height to span ratio, steel reinforcement ratio, FRP tube thickness, axial force, and compressive strength of concrete. A typical bridge was also simulated under three different ground acceleration records and damping ratios. Based on the analytical damage index, the RCF bridge was most severely damaged, whereas the GFF bridge only suffered minor repairable damages. Damping ratio was shown to have a pronounced effect on FRP-concrete bridges, just the same as in conventional bridges. This research was part of a multi-university project, which is founded by the National Science Foundation (NSF) Network for Earthquake Engineering Simulation Research (NEESR) program.
Resumo:
Mapping the abundance of 13C in leaf-wax components in surface sediments recovered from the seafloor off northwest Africa (0-35°N) reveals a clear pattern of delta13C distribution, indicating systematic changes in the proportions of terrestrial C3 and C4 plant input. At 20°N latitude, we find that isotopically enriched products characteristic of C4 plants account for more than 50% of the terrigenous inputs. This signal extends westward beneath the path of the dust-laden Sahara Air Layer (SAL). High C4 contributions, apparently carried by January trade winds, also extend far into the Gulf of Guinea. Similar distributions are obtained if summed pollen counts for the Chenopodiaceae-Amaranthaceae and the Poaceae are used as an independent C4 proxy. We conclude that the specificity of the latitudinal distribution of vegetation in North West Africa and the pathways of the wind systems (trade winds and SAL) are responsible for the observed isotopic patterns observed in the surface sediments. Molecular-isotopic maps on the marine-sedimentary time horizons (e.g., during the last glacial maximum) are thus a robust tool for assessing the phytogeographic changes on the tropical and sub-tropical continents, which have important implications for the changes in climatic and atmospheric conditions.
Resumo:
Improving the representation of the hydrological cycle in Atmospheric General Circulation Models (AGCMs) is one of the main challenges in modeling the Earth's climate system. One way to evaluate model performance is to simulate the transport of water isotopes. Among those available, tritium (HTO) is an extremely valuable tracer, because its content in the different reservoirs involved in the water cycle (stratosphere, troposphere, ocean) varies by order of magnitude. Previous work incorporated natural tritium into LMDZ-iso, a version of the LMDZ general circulation model enhanced by water isotope diagnostics. Here for the first time, the anthropogenic tritium injected by each of the atmospheric nuclear-bomb tests between 1945 and 1980 has been first estimated and further implemented in the model; it creates an opportunity to evaluate certain aspects of LDMZ over several decades by following the bomb-tritium transient signal through the hydrological cycle. Simulations of tritium in water vapor and precipitation for the period 1950-2008, with both natural and anthropogenic components, are presented in this study. LMDZ-iso satisfactorily reproduces the general shape of the temporal evolution of tritium. However, LMDZ-iso simulates too high a bomb-tritium peak followed by too strong a decrease of tritium in precipitation. The too diffusive vertical advection in AGCMs crucially affects the residence time of tritium in the stratosphere. This insight into model performance demonstrates that the implementation of tritium in an AGCM provides a new and valuable test of the modeled atmospheric transport, complementing water stable isotope modeling.
Resumo:
In this study, we present a new multiproxy data set of terrigenous input, marine productivity and sea surface temperature (SST) from 52 surface sediment samples collected along E-W transects in the Pacific sector of the Southern Ocean. Allochtonous terrigenous input was characterized by the distribution of plant wax n-alkanes and soil-derived branched glycerol dialkyl glycerol tetraethers (brGDGTs). 230Th-normalized burial rates of both compound groups were highest close to the potential sources in Australia and New Zealand and are strongly related to lithogenic contents, indicating common sources and transport. Detection of both long-chain n-alkanes and brGDGTs at the most remote sites in the open ocean strongly suggests a primarily eolian transport mechanism to at least 110°W, i.e. by prevailing westerly winds. Two independent organic SST proxies were used, the UK'37 based on long-chain alkenones, and the TEX86 based on isoprenoid GDGTs. Both, UK'37 and TEX86 indices show robust relationships with temperature over a temperature range between 0.5 and 20°C, likely implying different seasonal and regional imprints on the temperature signal. While alkenone-based temperature estimates reliably reflect modern SST even at the low temperature end, large temperature residuals are observed for the polar ocean using the TEX86 index. 230Th-normalized burial rates of alkenones are highest close to the Subtropical Front and are positively related to lithogenic fluxes throughout the study area. In contrast, highest isoGDGT burial south of the Antarctic Polar Front is not related with dust flux but may be largely controlled by diatom blooms, and thus high opal fluxes during austral summer.
Resumo:
Periplatform ooze is an admixture of pelagic carbonate and sediment derived from neritic carbonate platforms. Compositional variations of periplatform ooze allow the rectonstruction of past sea-level changes. Periplatform ooze formed during sea-level highstands is finer grained and richer in aragonit through the elevated input of material from the flooded platform compared to periplatform ooze formed during the episodes of lowered sea level. In many cases, however, the sea floor around carbonate platforms is subjected to bottom currents which are expected to affect sediment composition, i.e. through winnowing of the fine fraction. The interaction of sea-level driven highstand shedding and current impact on the formation of periplatform ooze is influenced or even distorted by changing current activity, an integrated study using seismic, hydroacoustic and sedimentological data has been performed on periplatform ooze deposited in the Inner Sea of the Maldives. The Miocene to Pleistocene succession of drift deposits is subdivided into nine units; limits of seismostratigraphic units correspond to changes or turnarounds in grain size trends in cores recovered at ODP Site 716 and NEOMA Site 1143. For the Pleistocene it can be shown how changes in grain size occur in concert with sea-level changes and changes of the monsoonal system, which is thought to be a major driver bottom currents in the Maldives. A clear hightstand shedding pattern only appears in the data at a time of of relaxation of monsoonal strength during the last 315 ky. Results imply (1) that drift sediments provide a potential target for analyzing past changes in oceanic currents and (2) that the ooze composition bears a mixed signal of input and physical winnowing at the sea floor.
Resumo:
Three main depositional sequences have been determined in the seismic records taken off West Spitsbergen (1) a Plio-Pleistocene sequence SPI-I with velocities of 1.7 to 2.8 km/sec; (2) a Pliocene allochthonous sequence SPI-II with velocities of 2.4 to 2.8 km/sec underlying unconformity U1; (3) a pre-Middle Oligocene sequence SPI-III with velocities of 2.9 to 4.8 km/sec underlying a distinct unconformity (U2) and deposited in front of the downfaulted Spitsbergen Platform indicating some opening of the Greenland Sea already before tbe time of magnetic anomaly 13 (36 m.y.b.p.). A marked change in the seismic configuration of the oceanic basement has been observed about 30 to 40 km east of the central Knipovich graben. The transition from the oceanic crust of the Knipovich Ridge to the strongly faulted, continental substratum of the Spitsbergen Platform occurs over a narrow zone and is associated with a pre-Middle Oligocene depocenter.
Resumo:
As noted in Part 1 of this report, the objective of the investigation was to apply principles of first-arrival seismic refraction to the problem of more quickly determining in-place dry density in highway materials. Part 2 of the report, contained herein, presents the results of both additional laboratory development of test techniques, plus extensive field test data.
Resumo:
[EN]Aeolian dust plays an important role in climate and ocean processes. Particularly, Saharan dust deposition is of importance in the Canary Current due to its content of iron minerals, which are fertilizers of the ocean. In this work, dust particles are characterized mainly by granulometry, morphometry and mineralogy, using image processing and scanning northern Mauritania and the Western Sahara. The concentration of terrigenous material was measured in three environments: the atmosphere (300 m above sea level), the mixed layer at 10 m depth, and 150 m depth. Samples were collected before and during the dust events, thus allowing the effect of Saharan dust inputs in the water column to be assessed. The dominant grain size was coarse silt
Resumo:
[EN] Aeolian dust plays an important role in climate and ocean processes. Particularly, Saharan dust deposition is of importance in the Canary Current due to its content of iron minerals, which are fertilizers of the ocean. In this work, dust particles are characterized mainly by granulometry, morphometry and mineralogy, using image processing and scanning northern Mauritania and the Western Sahara. The concentration of terrigenous material was measured in three environments: the atmosphere (300 m above sea level), the mixed layer at 10 m depth, and 150 m depth. Samples were collected before and during the dust events, thus allowing the effect of Saharan dust inputs in the water column to be assessed.
Resumo:
Italy and its urban systems are under high seismic and hydrogeological risks. The awareness about the role of human activities in the genesis of disasters is achieved in the scientific debate, as well as the role of urban and regional planning in reducing risks. The paper reviews the state of Italian major cities referred to hydrogeological and seismic risk by: 1) extrapolating data and maps about seismic hazard and landslide risk concerning cities with more than 50.000 inhabitants and metropolitan contexts, and 2) outlining how risk reduction is framed in Italian planning system (at national and regional levels). The analyses of available data and the review of the normative framework highlight the existing gaps in addressing risk reduction: nevertheless a wide knowledge about natural risks afflicting Italian territory and an articulated regulatory framework, the available data about risks are not exhaustive, and risk reduction policies and multidisciplinary pro-active approaches are only partially fostered and applied.
Resumo:
New morpho-bathymetric and tectono-stratigraphic data on Naples and Salerno Gulfs, derived from bathymetric and seismic data analysis and integrated geologic interpretation are here presented. The CUBE(Combined Uncertainty Bathymetric Estimator) method has been applied to complex morphologies, such as the Capri continental slope and the related geological structures occurring in the Salerno Gulf.The bathymetric data analysis has been carried out for marine geological maps of the whole Campania continental margin at scales ranging from 1:25.000 to 1:10.000, including focused examples in Naples and Salerno Gulfs, Naples harbour, Capri and Ischia Islands and Salerno Valley. Seismic data analysis has allowed for the correlation of main morpho-structural lineaments recognized at a regional scale through multichannel profiles with morphological features cropping out at the sea bottom, evident from bathymetry.Main fault systems in the area have been represented on a tectonic sketch map, including the master fault located northwards to the Salerno Valley half graben. Some normal faults parallel to the master fault have been interpreted from the slope map derived from bathymetric data. A complex system of antithetic faults bound two morpho-structural highs located 20km to the south of the Capri Island. Some hints of compressional reactivation of normal faults in an extensional setting involving the whole Campania continental margin have been shown from seismic interpretation.