991 resultados para STAMMLER, RODOLFO
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The hydrolysis step for sugar production in biorefineries is crucial for the sequential processes involved and cellulases cocktails behave differently according to the pretreatment employed. In this study, the application of the cellulases cocktail produced by the fungus Myceliophthora thermophila JCP1-4 was studied on the saccharification of sugarcane bagasse pretreated by ozonolysis and thermic ferric nitrate (TFN), and the results were compared with commercial enzymes (Novozymes Celluclast 1.5L, Novozym 188). The fungal cellulases cocktail hold an activity of FPU:β-glucosidase of 1:4(U/mL); time, temperature, FPU by g of cellulose load and percentage of dry matter (DM) were studied. The analysis of central composite design of TFN pretreated showed that fungal cellulases works better in DM values of 3–3.5% (4.5% for commercial), temperatures higher than 50 °C (<45 °C for commercial) and 15FPU for both; commercial enzymes yielded 7.78 g/L of reducing sugars and the fungal enzymes 5.42 g/L. With the ozone pretreated, the fungal enzymes presented a higher thermostability with faster kinects, being able to produce 5.56 g/L of reducing sugars (60 °C, 8 h), against 5.20 g/L for commercial enzymes (50 °C, 24 h), (10FPU, 3%DM for both). The FPU derivate analysis revels better yields with 7.5FPU, and the increase of DM to 7.5% resulted 13.28 g/L of reducing sugars.
Resumo:
This study evaluated the in vitro enamel remineralization capacity of experimental composite resins containing sodium trimetaphosphate (TMP) combined or not with fluoride (F). Bovine enamel slabs were selected upon analysis of initial surface hardness (SH1) and after induction of artificial carious lesions (SH2). Experimental resins were as follows: resin C (control-no sodium fluoride (NaF) or TMP), resin F (with 1.6 % NaF), resin TMP (with 14.1 % TMP), and resin TMP/F (with NaF and TMP). Resin samples were made and attached to enamel slabs (n = 12 slabs per material). Those specimens (resin/enamel slab) were subjected to pH cycling to promote remineralization, and then final surface hardness (SH3) was measured to calculate the percentage of surface hardness recovery (%SH). The integrated recovery of subsurface hardness (ΔKHN) and F concentration in enamel were also determined. Data was analyzed by ANOVA and Student-Newman-Keuls test (p < 0.05). Resins F and TMP/F showed similar SH3 values (p = 0.478) and %SH (p = 0.336) and differed significantly from the other resins (p < 0.001). Considering ΔKHN values, resin TMP/F presented the lowest area of lesion (p < 0.001). The presence of F on enamel was different among the fluoridated resins (p = 0.042), but higher than in the other resins (p < 0.001). The addition of TMP to a fluoridated composite resin enhanced its capacity for remineralization of enamel in vitro. The combination of two agents with action on enamel favored remineralization, suggesting that composite resins containing sodium trimetaphosphate and fluoride could be indicated for clinical procedures in situations with higher cariogenic challenges.
Resumo:
Veneer fracture is the most common complication in zirconia-based restorations. The aim of this study was to evaluate the mechanical behavior of a zirconia-based crown in a lower canine tooth supporting removable partial denture (RPD) prosthesis, varying the bond quality of the veneer/coping interface. Microtomography (μCT) data of an extracted left lower canine were used to build the finite element model (M) varying the core material (gold core - MAu; zirconia core - MZi) and the quality of the veneer/core interface (complete bonded - MZi; incomplete bonded - MZi-NL). The incomplete bonding condition was only applied for zirconia coping by using contact elements (Target/Contact) with 0.3 frictional coefficients. Stress fields were obtained using Ansys Workbench 10.0. The loading condition (L = 1 N) was vertically applied at the base of the RPD prosthesis metallic support towards the dental apex. Maximum principal (σmax) and von Mises equivalent (σvM) stresses were obtained. The σmax (MPa) for the bonded condition was similar between gold and zirconia cores (MAu, 0.42; MZi, 0.40). The incomplete bonded condition (MZi-NL) raised σmax in the veneer up to 800% (3.23 MPa) in contrast to the bonded condition. The peak of σvM increased up to 270% in the MZi-NL. The incomplete bond condition increasing the stress in the veneer/zirconia interface.
Resumo:
The purpose of this study was to evaluate the effect of self-adhesive and self-etching resin cements on the bond strength of nonmetallic posts in different root regions. Sixty single-rooted human teeth were decoronated, endodontically treated, post-space prepared, and divided into six groups. Glass-fiber (GF) posts (Exacto, Angelus) and fiber-reinforced composite (FRC) posts (EverStick, StickTeck) were cemented with self-adhesive resin cement (Breeze) (SA) (Pentral Clinical) and self-etching resin cement (Panavia-F) (SE) (Kuraray). Six 1-mm-thick rods were obtained from the cervical (C), middle (M), and apical (A) regions of the roots. The specimens were then subjected to microtensile testing in a special machine (BISCO; Schaumburg, IL, USA) at a crosshead speed of 0.5 mm/min. Microtensile bond strength data were analyzed with two-way ANOVA and Tukey's tests. Means (and SD) of the MPa were: GF/SA/C: 14.32 (2.84), GF/SA/M: 10.69 (2.72), GF/SA/A: 6.77 (2.17), GF/SE/C: 11.56 (4.13), GF/SE/M: 6.49 (2.54), GF/SE/A: 3.60 (1.29), FRC/SA/C: 16.89 (2.66), FRC/SA/M: 13.18 (2.19), FRC/SA/A: 8.45 (1.77), FRC/SE/C: 13.69 (3.26), FRC/SE/M: 9.58 (2.23), FRC/SE/A: 5.62 (2.12). The difference among the regions was statistically significant for all groups (p < 0.05). The self-adhesive resin cement showed better results than the self-etching resin cement when compared to each post (p < 0.05). No statistically significant differences in bond strengths of the resin cements when comparable to each post (p > 0.05). The bond strength values were significantly affected by the resin cement and the highest values were found for self-adhesive resin cement.
Resumo:
To maintain euglycemia in healthy organisms, hepatic glucose production is increased during fasting and decreased during the postprandial period. This whole process is supported by insulin levels. These responses are associated with the insulin signaling pathway and the reduction in the activity of key gluconeogenic enzymes, resulting in a decrease of hepatic glucose production. On the other hand, defects in the liver insulin signaling pathway might promote inadequate suppression of gluconeogenesis, leading to hyperglycemia during fasting and after meals. The hepatocyte nuclear factor 4, the transcription cofactor PGC1-α, and the transcription factor Foxo1 have fundamental roles in regulating gluconeogenesis. The loss of insulin action is associated with the production of pro-inflammatory biomolecules in obesity conditions. Among the molecular mechanisms involved, we emphasize in this review the participation of TRB3 protein (a mammalian homolog of Drosophila tribbles), which is able to inhibit Akt activity and, thereby, maintain Foxo1 activity in the nucleus of hepatocytes, inducing hyperglycemia. In contrast, physical exercise has been shown as an important tool to reduce insulin resistance in the liver by reducing the inflammatory process, including the inhibition of TRB3 and, therefore, suppressing gluconeogenesis. The understanding of these new mechanisms by which physical exercise regulates glucose homeostasis has critical importance for the understanding and prevention of diabetes.
Resumo:
A manutenção do balanço hídrico ou de água é particularmente desafiadora para os anfíbios em virtude de seu tegumento altamente permeável e o risco associado de perda evaporativa de água. Neste sentido, anuros terrestres exibem uma grande diversidade de mecanismos que atuam na diminuição da perda evaporativa de água e contribuem para a manutenção de um balanço hídrico adequado. Ademais, algumas espécies de anuros são conhecidas por tolerar altos níveis de desidratação e por engajar-se em atividades de rotina na natureza, ainda que sob níveis variáveis de desidratação. Finalmente, o próprio nível de desidratação pode acarretar alterações nos fatores envolvidos na manutenção do balanço de água dos anuros, aspecto muito pouco explorado em espécies terrestres neotropicais. Dessa forma, no presente estudo, mensuramos as taxas de perda evaporativa de água (PEA), reidratação a partir de água livre (Re) e calculamos a resistência da pele a desidratação (RP) em indivíduos adultos de Rhinella schneideri submetidos experimentalmente a diferentes níveis de desidratação (99%, 90%, 80% e 70% da massa corpórea inicial). Ademais, medimos as alterações causadas pela desidratação na osmolalidade plasmática (Osm), hematócrito (Htc), concentração de hemoglobina no sangue ([Hb]) e massa percentual dos órgãos viscerais. O objetivo central deste estudo foi avaliar os efeitos potenciais de diferentes níveis de desidratação sobre indicadores e repostas fisiológicas relevantes para a manutenção do balanço hídrico em uma espécie de anfíbio anuro terrestre. Nossos resultados mostram que quanto mais desidratados os animais, maiores a RP, a Re, a Osm, o Htc e a [Hb], e menores a PEA, e a massa percentual do fígado e do rim. O aumento da Osm, Htc e [Hb] indicam uma diminuição do compartimento aquoso do sangue, o que pode estar relacionado ao aumento da Re. A relação entre diminuição da PEA e aumento da...