892 resultados para Rotating bending


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vibrational spectroscopy enables subtle details of the molecular structure of cyrilovite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. Cyrilovite is the Fe3+ member of the wardite group. The infrared and Raman spectroscopy were applied to compare the structure of cyrilovite with that of wardite. The Raman spectrum of cyrilovite in the 800–1400 cm−1 spectral range shows two intense bands at 992 and 1055 cm−1 assigned to the ν1View the MathML source symmetric stretching vibrations. A series of low intensity bands at 1105, 1136, 1177 and 1184 cm−1 are assigned to the ν3View the MathML source antisymmetric stretching modes. The infrared spectrum of cyrilovite in the 500–1300 cm−1 shows much greater complexity than the Raman spectrum. Strong infrared bands are found at 970 and 1007 cm−1 and are attributed to the ν1View the MathML source symmetric stretching mode. Raman bands are observed at 612 and 631 cm−1 and are assigned to the ν4 out of plane bending modes of the View the MathML source unit. In the 2600–3800 cm−1 spectral range, intense Raman bands for cyrilovite are found at 3328 and 3452 cm−1 with a broad shoulder at 3194 cm−1 and are assigned to OH stretching vibrations. Sharp infrared bands are observed at 3485 and 3538 cm−1. Raman spectroscopy complimented with infrared spectroscopy has enabled the structure of cyrilovite to be ascertained and compared with that of wardite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have analyzed a frondelite mineral sample from the Cigana mine, located in the municipality of Conselheiro Pena, a well-known pegmatite in Brazil. In the Cigana pegmatite, secondary phosphates, namely eosphorite, fairfieldite, fluorapatite, frondelite, gormanite, hureaulite, lithiophilite, reddingite and vivianite are common minerals in miarolitic cavities and in massive blocks after triphylite. The chemical formula was determined as (Mn0.68, Fe0.32)(Fe3+)3,72(PO4)3.17(OH)4.99. The structure of the mineral was assessed using vibrational spectroscopy. Bands attributed to the stretching and bending modes of PO4 3- and HOPO3 3- units were identified. The observation of multiple bands supports the concept of symmetry reduction of the phosphate anion in the frondelite structure. Sharp Raman and infrared bands at 3581 cm−1 is assigned to the OH stretching vibration. Broad Raman bands at 3063, 3529 and 3365 cm−1 are attributed to water stretching vibrational modes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineral weloganite Na2Sr3Zr(CO3)6·3H2O has been studied by using vibrational spectroscopy and a comparison is made with the spectra of weloganite with other carbonate minerals. Weloganite is member of the mckelveyite group that includes donnayite-(Y) and mckelveyite-(Y). The Raman spectrum of weloganite is characterized by an intense band at 1082 cm−1 with shoulder bands at 1061 and 1073 cm−1, attributed to the View the MathML source symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of View the MathML source symmetric stretching vibration varies with mineral composition. The Raman bands at 1350, 1371, 1385, 1417, 1526, 1546, and 1563 cm−1 are assigned to the ν3 (CO3)2− antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for weloganite is significant in that it shows distortion of the carbonate anion in the mineral structure. The Raman band observed at 870 cm−1 is assigned to the (CO3)2− ν2 bending mode. Raman bands observed for weloganite at 679, 682, 696, 728, 736, 749, and 762 cm−1 are assigned to the (CO3)2− ν4 bending modes. A comparison of the vibrational spectra is made with that of the rare earth carbonates decrespignyite, bastnasite, hydroxybastnasite, parisite, and northupite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineral creedite is a fluorinated hydroxy hydrated sulphate of aluminium and calcium of formula Ca3Al2SO4(F,OH)·2H2O. The mineral has been studied by a combination of electron probe analysis to determine the molecular formula of the mineral and the structure assessed by vibrational spectroscopy. The spectroscopy of creedite may be compared with that of the alums. The Raman spectrum of creedite is characterised by an intense sharp band at 986 cm−1 assigned to the View the MathML source ν1 (Ag) symmetric stretching mode. Multiple bands of creedite in the antisymmetric stretching region support the concept of a reduction in symmetry of the sulphate anion. Multiple bands are also observed in the bending region with the three bands at 601, 629 and 663 cm−1 assigned to the View the MathML source ν4 (Ag) bending modes. The observation of multiple bands at 440, 457 and 483 cm−1 attributed to the View the MathML source ν2 (Bg) bending modes supports the concept that the symmetry of the sulphate is reduced by coordination to the water bonded to the Al3+ in the creedite structure. The splitting of the ν2, ν3 and ν4 modes is attributed to the reduction of symmetry of the SO4 and it is proposed that the sulphate coordinates to water in the hydrated aluminium in bidentate chelation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present how a thin RF sputtered layer of lanthanum oxide (La2O3) can alter electrical and improve hydrogen gas sensing characteristics of Pt/molybdenum oxide (MoO3) nanostructures Schottky diodes. We derived the barrier height, ideality factor and dielectric constant from the measured I–V characteristics at operating temperatures in the range of 25–300 ◦C. The dynamic response, response and recovery times were obtained upon exposure to hydrogen gas at different concentrations. Analysis of the results indicated a substantial improvement to the voltage shift sensitivity of the sensors incorporating the La2O3 layer. We associate this enhancement to the formation of numerous trap states due to the presence of the La2O3 thin film on the MoO3 nanoplatelets. These trap states increase the intensity of the dipolar charges at the metal–semiconductor interface, which induce greater bending of the energy bands. However, results also indicate that the presence of La2O3 trap states also increases response and recover times as electrons trapping and de-trapping processes occur before they can pass through this thin dielectric layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract An assessment of the molecular structure of carletonite a rare phyllosilicate mineral with general chemical formula given as KNa4Ca4Si8O18(CO3)4(OH,F)·H2O has been undertaken using vibrational spectroscopy. Carletonite has a complex layered structure. Within one period of c, it contains a silicate layer of composition NaKSi8O18·H2O, a carbonate layer of composition NaCO3·0.5H2O and two carbonate layers of composition NaCa2CO3(F,OH)0.5. Raman bands are observed at 1066, 1075 and 1086 cm−1. Whether these bands are due to the CO32- ν1 symmetric stretching mode or to an SiO stretching vibration is open to question. Multiple bands are observed in the 300–800 cm−1 spectral region, making the attribution of these bands difficult. Multiple water stretching and bending modes are observed showing that there is much variation in hydrogen bonding between water and the silicate and carbonate surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineral chalcosiderite with formula CuFe6(PO4)4(OH)8⋅4H2O has been studied by Raman spectroscopy and by infrared spectroscopy. A comparison of the chalcosiderite spectra is made with the spectra of turquoise. The spectra of the mineral samples are very similar in the 1200–900 cm−1 region but strong differences are observed in the 900–100 cm−1 region. The effect of substitution of Fe for Al in chalcosiderite shifts the bands to lower wave numbers. Factor group analysis (FGA) implies four OH stretching vibrations for both the water and hydroxyl units. Two bands ascribed to water are observed at 3276 and 3072 cm−1. Three hydroxyl stretching vibrations are observed. Calculations using a Libowitzky type formula show that the hydrogen bond distances of the water molecules are 2.745 and 2.812 Å which are considerably shorter than the values for the hydroxyl units 2.896, 2.917 and 2.978 Å. Two phosphate stretching vibrations at 1042 and 1062 cm−1 in line with the two independent phosphate units in the structure of chalcosiderite. Three bands are observed at 1102, 1159 and 1194 cm−1 assigned to the phosphate antisymmetric stretching vibrations. FGA predicts six bands but only three are observed due to accidental degeneracy. Both the ν2 and ν4 bending regions are complex. Four Raman bands observed at 536, 580, 598 and 636 cm−1 are assigned to the ν4 bending modes. Raman bands at 415, 420, 475 and 484 cm−1are assigned to the phosphate ν2 bending modes. Vibrational spectroscopy enables aspects of the molecular structure of chalcosiderite to be assessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation on hydrogen and methane sensing performance of hydrothermally formed niobium tungsten oxide nanorods employed in a Schottky diode structure is presented herein. By implementing tungsten into the surface of the niobium lattice, we create Nb5+ and W5+ oxide states and an abundant number of surface traps, which can collect and hold the adsorbate charge to reinforce a greater bending of the energy bands at the metal/oxide interface. We show experimentally, that extremely large voltage shifts can be achieved by these nanorods under exposure to gas at both room and high temperatures and attribute this to the strong accumulation of the dipolar charges at the interface via the surface traps. Thus, our results demonstrate that niobium tungsten oxide nanorods can be implemented for gas sensing applications, showing ultra-high sensitivities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this chapter, we will present a contemporary review of the hitherto numerical characterization of nanowires (NWs). The bulk of the research reported in the literatures concern metallic NWs including Al, Cu, Au, Ag, Ni, and their alloys NWs. Research has also been reported for the investigation of some nonmetallic NWs, such as ZnO, GaN, SiC, SiO2. A plenty of researches have been conducted regarding the numerical investigation of NWs. Issues analyzed include structural changes under different loading situations, the formation and propagation of dislocations, and the effect of the magnitude of applied loading on deformation mechanics. Efforts have also been made to correlate simulation results with experimental measurements. However, direct comparisons are difficult since most simulations are carried out under conditions of extremely high strain/loading rates and small simulation samples due to computational limitations. Despite of the immense numerical studies of NWs, a significant work still lies ahead in terms of problem formulation, interpretation of results, identification and delineation of deformation mechanisms, and constitutive characterization of behavior. In this chapter, we present an introduction of the commonly adopted experimental and numerical approaches in studies of the deformation of NWs in Section 1. An overview of findings concerning perfect NWs under different loading situations, such as tension, compression, torsion, and bending are presented in Section 2. In Section 3, we will detail some recent results from the authors’ own work with an emphasis on the study of influences from different pre-existing defect on NWs. Some thoughts on future directions of the computational mechanics of NWs together with Conclusions will be given in the last section.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article reports on the design and implementation of a computer-aided sheet nesting system (CASNS) for the nesting of two-dimensional irregular-shaped sheet-metal blanks on a given sheet stock or coil stock. The system is designed by considering several constraints of sheet-metal stamping operations, such as bridge width and grain orientation, and design requirements such as maximizing the strength of the part hen subsequent bending is involved, minimization of scrap, and economic justification for'a single or multiple station operation. Through many practical case studies, the system proves its efficiency, effectiveness and usefulness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cold-formed steel lipped channels are commonly used in LSF wall construction as load bearing studs with plasterboards on both sides. Under fire conditions, cold-formed thin-walled steel sections heat up quickly resulting in fast reduction in their strength and stiffness. Usually the LSF wall panels are subjected to fire from one side which will cause thermal bowing, neutral axis shift and magnification effects due to the development of non-uniform temperature distributions across the stud. This will induce an additional bending moment in the stud and hence the studs in LSF wall panels should be designed as a beam column considering both the applied axial compression load and the additional bending moment. Traditionally the fire resistance rating of these wall panels is based on approximate prescriptive methods. Very often they are limited to standard wall configurations used by the industry. Therefore a detailed research study is needed to develop fire design rules to predict the failure load and hence the failure time of LSF wall panels subject to non-uniform temperature distributions. This paper presents the details of an investigation to develop suitable fire design rules for LSF wall studs under non-uniform elevated temperature distributions. Applications of the previously developed fire design rules based on AISI design manual and Eurocode 3 Parts 1.2 and 1.3 to LSF wall studs were investigated in detail and new simplified fire design rules based on AS/NZS 4600 and Eurocode 3 Part 1.3 were proposed in the current study with suitable allowances for the interaction effects of compression and bending actions. The accuracy of the proposed fire design rules was verified by using the results from full scale fire tests and extensive numerical studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light gauge steel frame wall systems are commonly used in industrial and commercial buildings, and there is a need for simple fire design rules to predict their load capacities and fire resistance ratings. During fire events, the light gauge steel frame wall studs are subjected to non-uniform temperature distributions that cause thermal bowing, neutral axis shift and magnification effects and thus resulting in a combined axial compression and bending action on the studs. In this research, a series of full-scale fire tests was conducted first to evaluate the performance of light gauge steel frame wall systems with eight different wall configurations under standard fire conditions. Finite element models of light gauge steel frame walls were then developed, analysed under transient and steady-state conditions and validated using full-scale fire tests. Using the results from fire tests and finite element analyses, a detailed investigation was undertaken into the prediction of axial compression strength and failure times of light gauge steel frame wall studs in standard fires using the available fire design rules based on Australian, American and European standards. The results from both fire tests and finite element analyses were used to investigate the ability of these fire design rules to include the complex effects of non-uniform temperature distributions and their accuracy in predicting the axial compression strength of wall studs and the failure times. Suitable modifications were then proposed to the fire design rules. This article presents the details of this investigation on the fire design rules of light gauge steel frame walls and the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditionally the fire resistance rating of LSF wall systems is based on approximate prescriptive methods developed using limited fire tests. Therefore a detailed research study into the performance of load bearing LSF wall systems under standard fire conditions was undertaken to develop improved fire design rules. It used the extensive fire performance results of eight different LSF wall systems from a series of full scale fire tests and numerical studies for this purpose. The use of previous fire design rules developed for LSF walls subjected to non-uniform elevated temperature distributions based on AISI design manual and Eurocode3 Parts 1.2 and 1.3 was investigated first. New simplified fire design rules based on AS/NZS 4600, North American Specification and Eurocode 3 Part 1.3 were then proposed in this study with suitable allowances for the interaction effects of compression and bending actions. The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the new design rules to predict the failure load ratio versus time and temperature curves for varying LSF wall configurations. The accuracy of the proposed design rules was verified using the test and FEA results for different wall configurations, steel grades, thicknesses and load ratios. This paper presents the details and results of this study including the improved fire design rules for predicting the load capacity of LSF wall studs and the failure times of LSF walls under standard fire conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the mineral väyrynenite from the Viitaniemi pegmatite, located in the Eräjärvi area, Finland using a combination of electron microscopy electron microprobe and vibrational spectroscopic techniques. Chemical analysis shows the formula of the mineral to be (Mn0.88,Fe0.08,Mg0.01)∑0.97Be1.02(PO4)1.00(OH)1.02. Vibrational spectroscopy enables an assessment of the molecular structure of väyrynenite to be assessed. An intense Raman band at 1004 cm−1 is to the ν1 symmetric stretching mode. The observation of multiple bands in the phosphate stretching region, offers support for the concept of different phosphate units in the väyrynenite structure. Infrared spectroscopy confirms this multiplicity of vibrational bands. Multiple bands are observed in the phosphate bending region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineral amarantite Fe23+(SO4)O∙7H2O has been studied using a combination of techniques including thermogravimetry, electron probe analyses and vibrational spectroscopy. Thermal analysis shows decomposition steps at 77.63, 192.2, 550 and 641.4°C. The Raman spectrum of amarantite is dominated by an intense band at 1017 cm-1 assigned to the SO42- ν1 symmetric stretching mode. Raman bands at 1039, 1054, 1098, 1131, 1195 and 1233 cm-1 are attributed to the SO42- ν3 antisymmetric stretching modes. Very intense Raman band is observed at 409 cm-1 with shoulder bands at 399, 451 and 491 cm-1 are assigned to the v2 bending modes. A series of low intensity Raman bands are found at 543, 602, 622 and 650 cm-1 are assigned to the v4 bending modes. A very sharp Raman band at 3529 cm-1 is assigned to the stretching vibration of OH units. A series of Raman bands observed at 3025, 3089, 3227, 3340, 3401 and 3480 cm-1 are assigned to water bands. Vibrational spectroscopy enables aspects of the molecular structure of the mineral amarantite to be ascertained.