990 resultados para Resonant amplitude
Resumo:
Dissertação apresentada na faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
A variação rápida da rigidez das vias férreas, quer devido a mudança de solução estrutural, quer devido a alteração das condições geotécnicas pode induzir vibrações de amplitude excessiva à passagem de comboios de alta velocidade. Este comportamento causa desgaste da via. Nesta comunicação abordam-se aspectos de modelação e análise do problema. A contribuição consiste em desenvolvimento das soluções analíticas transientes de modelos simplificados em que a alteração de rigidez é implementada de duas formas. O primeiro caso corresponde à existência de uma rigidez adicional localizada e o segundo caso representa a passagem entre duas zonas de rigidez constante.
Resumo:
The objective of this contribution is to extend the models of cellular/composite material design to nonlinear material behaviour and apply them for design of materials for passive vibration control. As a first step a computational tool allowing determination of optimised one-dimensional isolator behaviour was developed. This model can serve as a representation for idealised macroscopic behaviour. Optimal isolator behaviour to a given set of loads is obtained by generic probabilistic metaalgorithm, simulated annealing. Cost functional involves minimization of maximum response amplitude in a set of predefined time intervals and maximization of total energy absorbed in the first loop. Dependence of the global optimum on several combinations of leading parameters of the simulated annealing procedure, like neighbourhood definition and annealing schedule, is also studied and analyzed. Obtained results facilitate the design of elastomeric cellular materials with improved behaviour in terms of dynamic stiffness for passive vibration control.
Resumo:
Mestrado em Gestão e Avaliação de Tecnologias em Saúde
Resumo:
High speed trains, when crossing regions with abrupt changes in vertical stiffness of the track and/or subsoil, may generate excessive ground and track vibrations. There is an urgent need for specific analyses of this problem so as to allow reliable esimates of vibration amplitude. Full understanding of these phenomena will lead to new construction solutions and mitigation of undesirable features. In this paper analytical transient solutions of dynamic response of one-dimensional systems with sudden change of foundation stiffness are derived. Results are expressed in terms of vertical displacement. Sensitivity analysis of the response amplitude is also performed. The analytical expressions presented herein, to the authors’ knowledge, have not been published yet. Although related to one-dimensional cases, they can give useful insight into the problem. Nevertheless, in order to obtain realistic response, vehicle- rail interaction cannot be omitted. Results and conclusions are confirmed using general purpose commercial software ANSYS. In conclusion, this work contributes to a better understanding of the additional vibration phenomenon due to vertical stiffness variation, permitting better control of the train velocity and optimization of the track design.
Resumo:
In this article, we present the first study on probabilistic tsunami hazard assessment for the Northeast (NE) Atlantic region related to earthquake sources. The methodology combines the probabilistic seismic hazard assessment, tsunami numerical modeling, and statistical approaches. We consider three main tsunamigenic areas, namely the Southwest Iberian Margin, the Gloria, and the Caribbean. For each tsunamigenic zone, we derive the annual recurrence rate for each magnitude range, from Mw 8.0 up to Mw 9.0, with a regular interval, using the Bayesian method, which incorporates seismic information from historical and instrumental catalogs. A numerical code, solving the shallow water equations, is employed to simulate the tsunami propagation and compute near shore wave heights. The probability of exceeding a specific tsunami hazard level during a given time period is calculated using the Poisson distribution. The results are presented in terms of the probability of exceedance of a given tsunami amplitude for 100- and 500-year return periods. The hazard level varies along the NE Atlantic coast, being maximum along the northern segment of the Morocco Atlantic coast, the southern Portuguese coast, and the Spanish coast of the Gulf of Cadiz. We find that the probability that a maximum wave height exceeds 1 m somewhere in the NE Atlantic region reaches 60 and 100 % for 100- and 500-year return periods, respectively. These probability values decrease, respectively, to about 15 and 50 % when considering the exceedance threshold of 5 m for the same return periods of 100 and 500 years.
Resumo:
A double pi'npin heterostructure based on amorphous SiC has a non linear spectral gain which is a function of the signal wavelength that impinges on its front or back surface. An impulse of a configurable length and amplitude is applied to a 390 nm LED which illuminates one of the sensor surfaces, followed by a time period without any illumination after which an input signal with a different wavelength is impinged upon the front surface. Results show that the intensity and duration of the impulse illumination of the surfaces influences the sensor's response with different output for the same input signal. This paper studies this effect and proposes an application as a short term light memory. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm2. Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under different circumstances. Processing of the amorphous films at low fluence (72 μJ) results in LIPSS formation only on localized spots on the film surface. LIPSS formation was also observed on the top of the undulations formed after laser processing with 78 μJ of the amorphous film deposited at 800 °C. Finally, large-area homogeneous LIPSS coverage of the boron carbide crystalline films surface was achieved within a large range of laser fluences although holes are also formed at higher laser fluences.
Resumo:
Dissertação apresentada no Departamento de Física na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Biomédica
Resumo:
Benign focal epilepsy in childhood with centro-temporal spikes (BECTS) is one of the most common forms of idiopathic epilepsy, with onset from age 3 to 14 years. Although the prognosis for children with BECTS is excellent, some studies have revealed neuropsychological deficits in many domains, including language. Auditory event-related potentials (AERPs) reflect activation of different neuronal populations and are suggested to contribute to the evaluation of auditory discrimination (N1), attention allocation and phonological categorization (N2), and echoic memory (mismatch negativity – MMN). The scarce existing literature about this theme motivated the present study, which aims to investigate and document the existing AERP changes in a group of children with BECTS. AERPs were recorded, during the day, to pure and vocal tones and in a conventional auditory oddball paradigm in five children with BECTS (aged 8–12; mean = 10 years; male = 5) and in six gender and age-matched controls. Results revealed high amplitude of AERPs for the group of children with BECTS with a slight latency delay more pronounced in fronto-central electrodes. Children with BECTS may have abnormal central auditory processing, reflected by electrophysiological measures such as AERPs. In advance, AERPs seem a good tool to detect and reliably reveal cortical excitability in children with typical BECTS.
Resumo:
Auditory event-related potentials (AERPs) are widely used in diverse fields of today’s neuroscience, concerning auditory processing, speech perception, language acquisition, neurodevelopment, attention and cognition in normal aging, gender, developmental, neurologic and psychiatric disorders. However, its transposition to clinical practice has remained minimal. Mainly due to scarce literature on normative data across age, wide spectrumof results, variety of auditory stimuli used and to different neuropsychological meanings of AERPs components between authors. One of the most prominent AERP components studied in last decades was N1, which reflects auditory detection and discrimination. Subsequently, N2 indicates attention allocation and phonological analysis. The simultaneous analysis of N1 and N2 elicited by feasible novelty experimental paradigms, such as auditory oddball, seems an objective method to assess central auditory processing. The aim of this systematic review was to bring forward normative values for auditory oddball N1 and N2 components across age. EBSCO, PubMed, Web of Knowledge and Google Scholarwere systematically searched for studies that elicited N1 and/or N2 by auditory oddball paradigm. A total of 2,764 papers were initially identified in the database, of which 19 resulted from hand search and additional references, between 1988 and 2013, last 25 years. A final total of 68 studiesmet the eligibility criteria with a total of 2,406 participants from control groups for N1 (age range 6.6–85 years; mean 34.42) and 1,507 for N2 (age range 9–85 years; mean 36.13). Polynomial regression analysis revealed thatN1latency decreases with aging at Fz and Cz,N1 amplitude at Cz decreases from childhood to adolescence and stabilizes after 30–40 years and at Fz the decrement finishes by 60 years and highly increases after this age. Regarding N2, latency did not covary with age but amplitude showed a significant decrement for both Cz and Fz. Results suggested reliable normative values for Cz and Fz electrode locations; however, changes in brain development and components topography over age should be considered in clinical practice.
Resumo:
An improved class of nonlinear bidirectional Boussinesq equations of sixth order using a wave surface elevation formulation is derived. Exact travelling wave solutions for the proposed class of nonlinear evolution equations are deduced. A new exact travelling wave solution is found which is the uniform limit of a geometric series. The ratio of this series is proportional to a classical soliton-type solution of the form of the square of a hyperbolic secant function. This happens for some values of the wave propagation velocity. However, there are other values of this velocity which display this new type of soliton, but the classical soliton structure vanishes in some regions of the domain. Exact solutions of the form of the square of the classical soliton are also deduced. In some cases, we find that the ratio between the amplitude of this wave and the amplitude of the classical soliton is equal to 35/36. It is shown that different families of travelling wave solutions are associated with different values of the parameters introduced in the improved equations.
Resumo:
We present results, obtained by means of an analytic study and a numerical simulation, about the resonant condition necessary to produce a Localized Surface Plasmonic Resonance (LSPR) effect at the surface of metal nanospheres embedded in an amorphous silicon matrix. The study is based on a Lorentz dispersive model for a-Si:H permittivity and a Drude model for the metals. Considering the absorption spectra of a-Si:H, the best choice for the metal nanoparticles appears to be aluminium, indium or magnesium. No difference has been observed when considering a-SiC:H. Finite-difference time-domain (FDTD) simulation of an Al nanosphere embedded into an amorphous silicon matrix shows an increased scattering radius and the presence of LSPR induced by the metal/semiconductor interaction under green light (560 nm) illumination. Further results include the effect of the nanoparticles shape (nano-ellipsoids) in controlling the wavelength suitable to produce LSPR. It has been shown that is possible to produce LSPR in the red part of the visible spectrum (the most critical for a-Si:H solar cells applications in terms of light absorption enhancement) with aluminium nano-ellipsoids. As an additional results we may conclude that the double Lorentz-Lorenz model for the optical functions of a-Si:H is numerically stable in 3D simulations and can be used safely in the FDTD algorithm. A further simulation study is directed to determine an optimal spatial distribution of Al nanoparticles, with variable shapes, capable to enhance light absorption in the red part of the visible spectrum, exploiting light trapping and plasmonic effects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
A new algorithm for the velocity vector estimation of moving ships using Single Look Complex (SLC) SAR data in strip map acquisition mode is proposed. The algorithm exploits both amplitude and phase information of the Doppler decompressed data spectrum, with the aim to estimate both the azimuth antenna pattern and the backscattering coefficient as function of the look angle. The antenna pattern estimation provides information about the target velocity; the backscattering coefficient can be used for vessel classification. The range velocity is retrieved in the slow time frequency domain by estimating the antenna pattern effects induced by the target motion, while the azimuth velocity is calculated by the estimated range velocity and the ship orientation. Finally, the algorithm is tested on simulated SAR SLC data.
Resumo:
Forest fires dynamics is often characterized by the absence of a characteristic length-scale, long range correlations in space and time, and long memory, which are features also associated with fractional order systems. In this paper a public domain forest fires catalogue, containing information of events for Portugal, covering the period from 1980 up to 2012, is tackled. The events are modelled as time series of Dirac impulses with amplitude proportional to the burnt area. The time series are viewed as the system output and are interpreted as a manifestation of the system dynamics. In the first phase we use the pseudo phase plane (PPP) technique to describe forest fires dynamics. In the second phase we use multidimensional scaling (MDS) visualization tools. The PPP allows the representation of forest fires dynamics in two-dimensional space, by taking time series representative of the phenomena. The MDS approach generates maps where objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to better understand forest fires behaviour.