996 resultados para Receptors, CCR2 -- metabolism
Resumo:
Protein energy wasting (PEW) is common in patients with chronic kidney disease (CKD) and is associated with adverse clinical outcomes, especially in individuals receiving maintenance dialysis therapy. A multitude of factors can affect the nutritional and metabolic status of CKD patients requiring a combination of therapeutic maneuvers to prevent or reverse protein and energy depletion. These include optimizing dietary nutrient intake, appropriate treatment of metabolic disturbances such as metabolic acidosis, systemic inflammation, and hormonal deficiencies, and prescribing optimized dialytic regimens. In patients where oral dietary intake from regular meals cannot maintain adequate nutritional status, nutritional supplementation, administered orally, enterally, or parenterally, is shown to be effective in replenishing protein and energy stores. In clinical practice, the advantages of oral nutritional supplements include proven efficacy, safety, and compliance. Anabolic strategies such as anabolic steroids, growth hormone, and exercise, in combination with nutritional supplementation or alone, have been shown to improve protein stores and represent potential additional approaches for the treatment of PEW. Appetite stimulants, anti-inflammatory interventions, and newer anabolic agents are emerging as novel therapies. While numerous epidemiological data suggest that an improvement in biomarkers of nutritional status is associated with improved survival, there are no large randomized clinical trials that have tested the effectiveness of nutritional interventions on mortality and morbidity.
Resumo:
Peroxisome proliferator-activated receptor (PPARs) are members of the nuclear receptor superfamily. For transcriptional activation of their target genes, PPARs heterodimerize with the retinoid-X receptor (RXR). The convergence of the PPAR and RXR signaling pathways has been shown to have an important function in lipid metabolism. The promoter of the gene encoding the acyl-coenzyme-A oxidase (ACO), the rate-limiting enzyme in peroxisomal beta-oxidation of fatty acids, is a target site of PPAR action. In this study, we examined the role and the contribution of both cis-and trans-acting factors in the transcriptional regulation of this gene using transient transfections in insect cells. We identified several functional cis-acting elements present in the promoter of the ACO gene and established that PPAR-dependent as well as PPAR-independent mechanisms can activate the ACO promoter in these cells. We show that the PPAR/RXR heterodimer exerts its effect through two response elements within the ACO promoter, in synergy with the transcription factor Sp1 via five Sp1-binding sites. Furthermore, this functional interaction also occurs when Sp1 is co-expressed with PPAR or RXR alone, indicating that activation can occur independently of PPAR/RXR heterodimers.
Resumo:
The aims of this study were to check whether different biomarkers of inflammatory, apoptotic, immunological or lipid pathways had altered their expression in the occluded popliteal artery (OPA) compared with the internal mammary artery (IMA) and femoral vein (FV) and to examine whether glycemic control influenced the expression of these genes. The study included 20 patients with advanced atherosclerosis and type 2 diabetes mellitus, 15 of whom had peripheral arterial occlusive disease (PAOD), from whom samples of OPA and FV were collected. PAOD patients were classified based on their HbA1c as well (HbA1c ≤ 6.5) or poorly (HbA1c > 6.5) controlled patients. Controls for arteries without atherosclerosis comprised 5 IMA from patients with ischemic cardiomyopathy (ICM). mRNA, protein expression and histological studies were analyzed in IMA, OPA and FV. After analyzing 46 genes, OPA showed higher expression levels than IMA or FV for genes involved in thrombosis (F3), apoptosis (MMP2, MMP9, TIMP1 and TIM3), lipid metabolism (LRP1 and NDUFA), immune response (TLR2) and monocytes adhesion (CD83). Remarkably, MMP-9 expression was lower in OPA from well-controlled patients. In FV from diabetic patients with HbA1c ≤6.5, gene expression levels of BCL2, CDKN1A, COX2, NDUFA and SREBP2 were higher than in FV from those with HbA1c >6.5. The atherosclerotic process in OPA from diabetic patients was associated with high expression levels of inflammatory, lipid metabolism and apoptotic biomarkers. The degree of glycemic control was associated with gene expression markers of apoptosis, lipid metabolism and antioxidants in FV. However, the effect of glycemic control on pro-atherosclerotic gene expression was very low in arteries with established atherosclerosis.
Resumo:
BACKGROUND FABP4 is predominantly expressed in adipose tissue, and its circulating levels are linked with obesity and a poor atherogenic profile. OBJECTIVE In patients with a wide BMI range, we analyze FABP4 expression in adipose and hepatic tissues in the settings of obesity and insulin resistance. Associations between FABP4 expression in adipose tissue and the FABP4 plasma level as well as the main adipogenic and lipolytic genes expressed in adipose tissue were also analyzed. METHODS The expression of several lipogenic, lipolytic, PPAR family and FABP family genes was analyzed by real time PCR. FABP4 protein expression in total adipose tissues and its fractions were determined by western blot. RESULTS In obesity FABP4 expression was down-regulated (at both mRNA and protein levels), with its levels mainly predicted by ATGL and inversely by the HOMA-IR index. The BMI appeared as the only determinant of the FABP4 variation in both adipose tissue depots. FABP4 plasma levels showed a significant progressive increase according to BMI but no association was detected between FABP4 circulating levels and SAT or VAT FABP4 gene expression. The gene expression of FABP1, FABP4 and FABP5 in hepatic tissue was significantly higher in tissue from the obese IR patients compared to the non-IR group. CONCLUSION The inverse pattern in FABP4 expression between adipose and hepatic tissue observed in morbid obese patients, regarding the IR context, suggests that both tissues may act in a balanced manner. These differences may help us to understand the discrepancies between circulating plasma levels and adipose tissue expression in obesity.
Resumo:
The common ectodermal origin of the skin and nervous systems can be expected to predict likely interactions in the adult. Over the last couple of decades much progress has been made to elucidate the nature of these interactions, which provide multidirectional controls between the centrally located brain and the peripherally located skin and immune system. The opioid system is an excellent example of such an interaction and there is growing evidence that opioid receptors (OR) and their endogenous opioid agonists are functional in different skin structures, including peripheral nerve fibres, keratinocytes, melanocytes, hair follicles and immune cells. Greater knowledge of these skin-associated opioid interactions will be important for the treatment of chronic and acute pain and pruritus. Topical treatment of the skin with opioid ligands is particularly attractive as they are active with few side effects, especially if they cannot cross the blood-brain barrier. Moreover, cutaneous activation of the opioid system (e.g. by peripheral nerves, cutaneous and immune cells, especially in inflamed and damaged skin) can influence cell differentiation and apoptosis, and thus may be important for the repair of damaged skin. While many of the pieces of this intriguing puzzle remain to be found, we attempt in this review to weave a thread around available data to discuss how the peripheral opioid system may impact on different key players in skin physiology and pathology.
Resumo:
CONTEXT Adipose tissue hypoxia and endoplasmic reticulum (ER) stress may link the presence of chronic inflammation and macrophage infiltration in severely obese subjects. We previously reported the up-regulation of TNF-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14) axis in adipose tissue of severely obese type 2 diabetic subjects. OBJECTIVES The objective of the study was to examine TWEAK and Fn14 adipose tissue expression in obesity, severe obesity, and type 2 diabetes in relation to hypoxia and ER stress. DESIGN In the obesity study, 19 lean, 28 overweight, and 15 obese nondiabetic subjects were studied. In the severe obesity study, 23 severely obese and 35 control subjects were studied. In the type 2 diabetes study, 11 type 2 diabetic and 36 control subjects were studied. The expression levels of the following genes were analyzed in paired samples of sc and visceral adipose tissue: Fn14, TWEAK, VISFATIN, HYOU1, FIAF, HIF-1a, VEGF, GLUT-1, GRP78, and XBP-1. The effect of hypoxia, inflammation, and ER stress on the expression of TWEAK and Fn14 was examined in human adipocyte and macrophage cell lines. RESULTS Up-regulation of TWEAK/Fn14 and hypoxia and ER stress surrogate gene expression was observed in sc and visceral adipose tissue only in our severely obese cohort. Hypoxia modulates TWEAK or Fn14 expression in neither adipocytes nor macrophages. On the contrary, inflammation up-regulated TWEAK in macrophages and Fn14 expression in adipocytes. Moreover, TWEAK had a proinflammatory effect in adipocytes mediated by the nuclear factor-kappaB and ERK but not JNK signaling pathways. CONCLUSIONS Our data suggest that TWEAK acts as a pro-inflammatory cytokine in the adipose tissue and that inflammation, but not hypoxia, may be behind its up-regulation in severe obesity.
Resumo:
Oncogenesis is closely linked to abnormalities in cell differentiation. Notch signaling provides an important form of intercellular communication involved in cell fate determination, stem cell potential and differentiation. Here we review the role of this pathway in the integrated growth/differentiation control of the keratinocyte cell type, and the maintenance of normal skin homeostasis. In parallel with the pro-differentiation function of Notch1 in keratinocytes, we discuss recent evidence pointing to a tumor suppressor function of this gene in both mouse skin and human cervical carcinogenesis. The possibility that Notch signaling elicits signals with a duality of growth positive and negative function will be discussed.
Resumo:
Toll-like receptors (TLRs) recognise pathogen-derived molecules and influence immunity to control parasite infections. This study aimed to evaluate the mRNA expression of TLRs 2 and 4, the expression and production of the cytokines interleukin (IL)-12, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-17, IL-10 and transforming growth factor (TGF)-β and the production of nitric oxide (NO) in the spleen of mice infected with Leishmania chagasi. It also aimed to evaluate any correlations between mRNA expression TLR2 and 4 and cytokines and NO production. Infection resulted in increased TLR2-4, IL-17, TNF-α and TGF-β mRNA expression during early infection, with decreased expression during late infection correlating with parasite load. IFN-γ and IL-12 mRNA expression decreased at the peak of parasitism. IL-10 mRNA expression increased throughout the entire time period analysed. Although TGF-β, TNF-α and IL-17 were highly produced during the initial phase of infection, IFN-γ and IL-12 exhibited high production during the final phase of infection. IL-10 and NO showed increased production throughout the evaluated time period. In the acute phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17, NO, IL-10 and TGF-β expression and parasite load. During the chronic phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17 and TGF-β expression and parasite load. Our data suggest that infection by L. chagasi resulted in modulation of TLRs 2 and 4 and cytokines.
Resumo:
The recognition of pathogen-derived structures by C-type lectins and the chemotactic activity mediated by the CCL2/CCR2 axis are critical steps in determining the host immune response to fungi. The present study was designed to investigate whether the presence of single nucleotide polymorphisms (SNPs) within DC-SIGN, Dectin-1, Dectin-2, CCL2 and CCR2 genes influence the risk of developing Invasive Pulmonary Aspergillosis (IPA). Twenty-seven SNPs were selected using a hybrid functional/tagging approach and genotyped in 182 haematological patients, fifty-seven of them diagnosed with proven or probable IPA according to the 2008 EORTC/MSG criteria. Association analysis revealed that carriers of the Dectin-1(rs3901533 T/T) and Dectin-1(rs7309123 G/G) genotypes and DC-SIGN(rs4804800 G), DC-SIGN(rs11465384 T), DC-SIGN(7248637 A) and DC-SIGN(7252229 C) alleles had a significantly increased risk of IPA infection (OR = 5.59 95%CI 1.37-22.77; OR = 4.91 95%CI 1.52-15.89; OR = 2.75 95%CI 1.27-5.95; OR = 2.70 95%CI 1.24-5.90; OR = 2.39 95%CI 1.09-5.22 and OR = 2.05 95%CI 1.00-4.22, respectively). There was also a significantly increased frequency of galactomannan positivity among patients carrying the Dectin-1(rs3901533_T) allele and Dectin-1(rs7309123_G/G) genotype. In addition, healthy individuals with this latter genotype showed a significantly decreased level of Dectin-1 mRNA expression compared to C-allele carriers, suggesting a role of the Dectin-1(rs7309123) polymorphism in determining the levels of Dectin-1 and, consequently, the level of susceptibility to IPA infection. SNP-SNP interaction (epistasis) analysis revealed significant interactions models including SNPs in Dectin-1, Dectin-2, CCL2 and CCR2 genes, with synergistic genetic effects. Although these results need to be further validated in larger cohorts, they suggest that Dectin-1, DC-SIGN, Dectin-2, CCL2 and CCR2 genetic variants influence the risk of IPA infection and might be useful in developing a risk-adapted prophylaxis.
Resumo:
Bowel diseases reveal the complex interplay of sensing and signalling pathways in maintaining healthy homeostasis of the intestine. Recent studies of the xenobiotic nuclear receptor, pregnane X receptor and the inflammatory mediator nuclear transcription factor kappaB (NF-kappaB) reveal a functional link between xenobiotic neutralization and inflammation and explain how certain xenobiotics can affect the immune response. Furthermore, another nuclear receptor, peroxisome proliferator-activated receptor gamma (PPAR gamma) has been shown to produce beneficial effects in experimental inflammatory bowel diseases by repression of NF-kappaB thereby reducing inflammation, whilst its close relative PPAR beta/delta appears at a central position in signalling pathways involved in the progression of colon cancer. Recently accumulated knowledge on the action of these nuclear receptors and NF-kappaB in intestinal homeostasis may provide the rationale for the development of innovative treatment strategies with selective receptor modulators.
Resumo:
Morphogens of the Wnt protein family are the secreted lipoglycoprotein ligands which initiate several pathways heavily involved in the coordination of various developmental stages of organisms in the majority of animal species. Deregulation of these pathways in the adult leads to formation and sustaining of multiple types of cancer. The latter notion is reinforced by the fact that the very discovery of the first Wnt ligand was due to its role as the causative factor of carcinogenic transformation (Nusse and Varmus, 1982). Nowadays our knowledge on Wnt signaling has "moved with the times" and these pathways were identified to be often crucial for tumor formation, its interactions with the microenvironment, and promotion of the metastases (Huang and Du, 2008; Zerlin et al., 2008; Jessen, 2009). Thus the relevance of the pathway as the target for drug development has further increased in the light of modern paradigms of the complex cancer treatments which target also spreading and growth- promoting factors of tumors by specific and highly efficient substances (Pavet et al., 2010). Presently the field of the Wnt-targeting drug research is almost solely dominated by assays based on transcriptional activation induced by the signaling. This approach resulted in development of a number of promising substances (Lee et al., 2011). Despite its effectiveness, the method nevertheless suffers from several drawbacks. Among the major ones is the fact that this approach is prone to identify compounds targeting rather downstream effectors of the pathway, which are indiscriminately used by all the subtypes of the Wnt signaling. Additionally, proteins which are involved in several signaling cascades and not just the Wnt pathway turn out as targets of the new compounds. These issues increase risks of side effects due to off-target interactions and blockade of the pathway in healthy cells. In the present work we put forward a novel biochemical approach for drug development on the Wnt pathway. It targets Frizzleds (Fzs) - a family of 7-transmbembrane proteins which serve as receptors for Wnt ligands. They offer unique properties for the development of highly specific and effective drugs as they control all branches of the Wnt signaling. Recent advances in the understanding of the roles of heterotrimeric G proteins downstream from Fzs (Katanaev et al., 2005; Liu et al., 2005; Jernigan et al., 2010) suggest application of enzymatic properties of these effectors to monitor the receptor-mediated events. We have applied this knowledge in practice and established a specific and efficient method based on utilization of a novel high-throughput format of the GTP-binding assay to follow the activation of Fzs. This type of assay is a robust and well-established technology for the research and screenings on the GPCRs (Harrison and Traynor, 2003). The conventional method of detection involves the radioactively labeled non-hydrolysable GTP analog [35S]GTPyS. Its application in the large-scale screenings is however problematic which promoted development of the novel non-radioactive GTP analog GTP-Eu. The new molecule employs phenomenon of the time-resolved fluorescence to provide sensitivity comparable to the conventional radioactive substance. Initially GTP-Eu was tested only in one of many possible types of GTP-binding assays (Frang et al., 2003). In the present work we expand these limits by demonstrating the general comparability of the novel label with the radioactive method in various types of assays. We provide a biochemical characterization of GTP-Eu interactions with heterotrimeric and small GTPases and a comparative analysis of the behavior of the new label in the assays involving heterotrimeric G protein effectors. These developments in the GTP-binding assay were then applied to monitor G protein activation by the Fz receptors. The data obtained in mammalian cultured cell lines provides for the first time an unambiguous biochemical proof for direct coupling of Fzs with G proteins. The specificity of this interaction has been confirmed by the experiments with the antagonists of Fz and by the pertussis toxin-mediated deactivation. Additionally we have identified the specificity of Wnt3a towards several members of the Fz family and analyzed the properties of human Fz-1 which was found to be the receptor coupled to the Gi/o family of G proteins. Another process playing significant role in the functioning of every GPCR is endocytosis. This phenomenon can also be employed for drug screenings on GPCRs (Bickle, 2010). In the present work we have demonstrated that Drosophila Fz receptors are involved in an unusual for many GPCRs manifestation of the receptor-mediated internalization. Through combination of biochemical approaches and studies on Drosophila as the model organism we have shown that direct interactions of the Fzs and the α-subunit of the heterotrimeric G protein Go with the small GTPase Rab5 regulate internalization of the receptor in early endosomes. We provide data uncovering the decisive role of this self-promoted endocytosis in formation of a proper signaling output in the canonical as well as planar cell polarity (PCP) pathways regulated by Fz. The results of this work thus establish a platform for the high-throughput screening to identify substances active in the cancer-related Wnt pathways. This methodology has been adjusted and applied to provide the important insights in Fz functioning and will be instrumental for further investigations on the Wnt-mediated pathways.
Resumo:
To determine possible mechanisms of action that might explain the nutrient partitioning effect of betaine and conjugated linoleic acid (CLA) in Iberian pigs and to address potential adverse effects, twenty gilts were restrictively fed from 20 to 50 kg BW Control, 0.5% betaine, 1% CLA or 0.5% betaine + 1% CLA diets. Serum hormones and metabolites profile were determined at 30 kg BW and an oral glucose test was performed before slaughter. Pigs were slaughtered at 50 kg BW and livers were obtained for chemical and histological analysis. Decreased serum urea in pigs fed betaine and betaine + CLA diets (11%; P = 0.0001) indicated a more efficient N utilization. The increase in serum triacylglycerol (58% and 28%, respectively; P = 0.0098) indicated that CLA and betaine + CLA could have reduced adipose tissue triacylglycerol synthesis from preformed fatty acids. Serum glucose, low-density lipoprotein (LDL) cholesterol and non-esterified fatty acids were unaffected. CLA and betaine + CLA altered serum lipids profile, although liver of pigs fed CLA diet presented no histopathological changes and triglyceride content was not different from Control pigs. Compared with controls, serum growth hormone decreased (20% to 23%; P = 0.0209) for all treatments. Although serum insulin increased in CLA, and especially in betaine + CLA pigs (28% and 83%; P = 0.0001), indices of insulin resistance were unaffected. In conclusion, CLA, and especially betaine + CLA, induced changes in biochemical parameters and hormones that may partially explain a nutrient partitioning effect in young pigs. Nevertheless, they exhibited weak, although detrimental, effects on blood lipids. Moreover, although livers were chemically and histologically normal, pigs fed CLA diet challenged with a glucose load had higher serum glucose than controls.
Resumo:
Originally invented for topographic imaging, atomic force microscopy (AFM) has evolved into a multifunctional biological toolkit, enabling to measure structural and functional details of cells and molecules. Its versatility and the large scope of information it can yield make it an invaluable tool in any biologically oriented laboratory, where researchers need to perform characterizations of living samples as well as single molecules in quasi-physiological conditions and with nanoscale resolution. In the last 20 years, AFM has revolutionized the characterization of microbial cells by allowing a better understanding of their cell wall and of the mechanism of action of drugs and by becoming itself a powerful diagnostic tool to study bacteria. Indeed, AFM is much more than a high-resolution microscopy technique. It can reconstruct force maps that can be used to explore the nanomechanical properties of microorganisms and probe at the same time the morphological and mechanical modifications induced by external stimuli. Furthermore it can be used to map chemical species or specific receptors with nanometric resolution directly on the membranes of living organisms. In summary, AFM offers new capabilities and a more in-depth insight in the structure and mechanics of biological specimens with an unrivaled spatial and force resolution. Its application to the study of bacteria is extremely significant since it has already delivered important information on the metabolism of these small microorganisms and, through new and exciting technical developments, will shed more light on the real-time interaction of antimicrobial agents and bacteria.
Resumo:
Objective. To evaluate the association between diabetes mellitus and health-related quality of life (HRQOL) controlled for several sociodemographic and anthropometric variables, in a representative sample of the Spanish population. Methods. A population-based, cross-sectional, and cluster sampling study, with the entire Spanish population as the target population. Five thousand and forty-seven participants (2162/2885 men/women) answered the HRQOL short form 12 questionnaire (SF-12). The physical (PCS-12) and the mental component summary (MCS-12) scores were assessed. Subjects were divided into four groups according to carbohydrate metabolism status: normal, prediabetes, unknown diabetes (UNKDM), and known diabetes (KDM). Logistic regression analyses were conducted. Results. Mean PCS-12/MCS-12 values were 50.9 ± 8.5/47.6 ± 10.2, respectively. Men had higher scores than women in both PCS-12 (51.8 ± 7.2 versus 50.3 ± 9.2; P < 0.001) and MCS-12 (50.2 ± 8.5 versus 45.5 ± 10.8; P < 0.001). Increasing age and obesity were associated with a poorer PCS-12 score. In women lower PCS-12 and MCS-12 scores were associated with a higher level of glucose metabolism abnormality (prediabetes and diabetes), (P < 0.0001 for trend), but only the PCS-12 score was associated with altered glucose levels in men (P < 0.001 for trend). The Odds Ratio adjusted for age, body mass index (BMI) and educational level, for a PCS-12 score below the median was 1.62 (CI 95%: 1.2–2.19; P < 0.002) for men with KDM and 1.75 for women with KDM (CI 95%: 1.26–2.43; P < 0.001), respectively. Conclusion. Current study indicates that increasing levels of altered carbohydrate metabolism are accompanied by a trend towards decreasing quality of life, mainly in women, in a representative sample of Spanish population.
Resumo:
OBJECTIVE: To evaluate the effect of a 4-day carbohydrate overfeeding on whole body net de novo lipogenesis and on markers of de novo lipogenesis in subcutaneous adipose tissue of healthy lean humans. RESEARCH METHODS AND PROCEDURES: Nine healthy lean volunteers (five men and four women) were studied after 4 days of either isocaloric feeding or carbohydrate overfeeding. On each occasion, they underwent a metabolic study during which their energy expenditure and net substrate oxidation rates (indirect calorimetry), and the fractional activity of the pentose-phosphate pathway in subcutaneous adipose tissue (subcutaneous microdialysis with 1,6(13)C2,6,6(2)H2 glucose) were assessed before and after administration of glucose. Adipose tissue biopsies were obtained at the end of the experiments to monitor mRNAs of key lipogenic enzymes. RESULTS: Carbohydrate overfeeding increased basal and postglucose energy expenditure and net carbohydrate oxidation. Whole body net de novo lipogenesis after glucose loading was markedly increased at the expense of glycogen synthesis. Carbohydrate overfeeding also increased mRNA levels for the key lipogenic enzymes sterol regulatory element-binding protein-1c, acetyl-CoA carboxylase, and fatty acid synthase. The fractional activity of adipose tissue pentose-phosphate pathway was 17% to 22% and was not altered by carbohydrate overfeeding. DISCUSSION: Carbohydrate overfeeding markedly increased net de novo lipogenesis at the expense of glycogen synthesis. An increase in mRNAs coding for key lipogenic enzymes suggests that de novo lipogenesis occurred, at least in part, in adipose tissue. The pentose-phosphate pathway is active in adipose tissue of healthy humans, consistent with an active role of this tissue in de novo lipogenesis.