983 resultados para RATE COEFFICIENTS
Resumo:
The time series of abundance indices for many groundfish populations, as determined from trawl surveys, are often imprecise and short, causing stock assessment estimates of abundance to be imprecise. To improve precision, prior probability distributions (priors) have been developed for parameters in stock assessment models by using meta-analysis, expert judgment on catchability, and empirically based modeling. This article presents a synthetic approach for formulating priors for rockfish trawl survey catchability (qgross). A multivariate prior for qgross for different surveys is formulated by using 1) a correction factor for bias in estimating fish density between trawlable and untrawlable areas, 2) expert judgment on trawl net catchability, 3) observations from trawl survey experiments, and 4) data on the fraction of population biomass in each of the areas surveyed. The method is illustrated by using bocaccio (Sebastes paucipinis) in British Columbia. Results indicate that expert judgment can be updated markedly by observing the catch-rate ratio from different trawl gears in the same areas. The marginal priors for qgross are consistent with empirical estimates obtained by fitting a stock assessment model to the survey data under a noninformative prior for qgross. Despite high prior uncertainty (prior coefficients of variation ≥0.8) and high prior correlation between qgross, the prior for qgross still enhances the precision of key stock assessment quantities.
Resumo:
Mortality, fecundity, and size at maturity are important life history traits, and their interactions determine the evolution of life history strategies (Roff, 1992; Stearns, 1992; Charnov, 2002). These same traits are also important for population dynamics models (Hunter et al., 1992; Clark, 1999). It is increasingly important to accurately determine Greenland halibut (Reinhardtius hippoglossoides) life history traits and to correctly assess the status of its stocks because low recruitment or low biomass estimates have led to catch restrictions in the Bering Sea and Aleutian Islands (Ianelli et al.1), the Northeastern Arctic (Ådlandsvik et al., 2004), and the Northwest Atlantic (Bowering and Nedreaas, 2000).
Resumo:
The number of pelagic fish eggs (cod and cunner) found in stomachs of capelin (Mallotus villosus) sampled in coastal Newfoundland was used to estimate the encounter rates between capelin and prey, and thus the effective volume swept by capelin. Fish eggs were found in 4−8% of capelin stomachs, represented an average of 1% of prey by numbers, and their abundance increased as relative stomach fullness decreased. The average number of eggs per stomach doubled for each 5-cm increase in length of capelin. The effective volume swept for eggs by capelin ranged from 0.04 to 0.84 m3/h—a rate that implies either very slow capelin swimming speeds (<1 cm/s) or that fish eggs are not strongly selected as prey. The predation rate estimated from stomach contents was higher than that predicted from laboratory studies of feeding pelagic fish and lower than that predicted by a simple foraging model. It remains uncertain whether capelin play an important regulatory role in the dynamics of early life stages of other fish.
Resumo:
A simple approach is introduced to estimate the natural mortality rate (M) of fish stocks. The approach is based on the age at maximum cohort biomass, or critical length (L*) concept. The ratio of the critical length to the asymptotic length ( = L*/L8) is relatively constant in 141 fish stocks at 0.62 (CV = 21.4 per cent) and the relationship M = 3K(1- )/ is derived and could be used to estimate M, where K is the growth coefficient of the von Bertalanffy growth function. Average values of are given for the various Families of fish in order to estimate M based on closely related species.
Resumo:
Estimates for the growth parameters (L sub( infinity ) and K) mortality coefficients (Z,M and F) and exploitation rate (E) for the sciaenid Plagioscion squamosissimus are presented. The following results were obtained: 1) for male: L sub( arrow right )=44.2 cm, K=0.30 yr super(1), Z=0.82 yr super(1), M=0.66 yr super(1), F=0.16 yr super(1), and E=0.20; and 2) for females: L sub( arrow right )=68.4, K=0.22 yr super(1), Z=0.91 yr super(1), M=0.47 yr super(1), F=0.44 yr super(1) and E=0.49. Females are more heavily fished than males. Artisanal fishing carried out with gillnets, is mainly directed toward the young section of the population and individuals reproducing for the first time.