999 resultados para Quantum algorithms
Resumo:
We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify its accuracy.
Resumo:
A new method was used to prepare erbium-doped high silica (SiO2% > 96%) glasses by sintering nanoporous glasses. The concentration of erbium ions in high silica glasses can be considerably more than that in silica glasses prepared by using conventional methods. The fluorescence of 1532 nm has an FWHM (Full Wave at Half Maximum) of 50 nm, wider than 35 nm of EDSFA (erbium-doped silica fiber amplifer), and hence the glass possesses potential application in broadband fiber amplifiers. The Judd-Ofelt theoretical analysis reflects that the quantum efficiency of this erbium-doped glass is about 0.78, although the erbium concentration in this glass (6 x 103) is about twenty times higher than that in silica glass. These excellent characteristics of Er-doped high silica glass will be conducive to its usage in optical amplifiers and microchip lasers.
Resumo:
For the first time, a quaternary doping system of Er3+, Yb3+, Ce3+, Na+:CaF2 single crystal was demonstrated to have high fluorescence yield in the eye-safe 1.5 mu m region under 980 nm laser diode pumping, with relatively broad and flat gain curves. A simplified model was established to illustrate the effect of Ce3+ on the branching ratio for the Er3+4I11/2 -> I-4(13/2) transition. With 0.2-at.% Er3+ and 2.0-at.% Ce3+ in the quaternary-doped CaF2 crystal, the branching ratio was estimated to be improved more than 40 times by the deactivating effect of Ce3+ on the Er3+ 4I11/2 level. The quaternary-doped CaF2, system shows great potential to achieve high laser performance in the 1.5 mu m region. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.
Resumo:
Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.
Resumo:
Circuit quantum electrodynamics, consisting of superconducting artificial atoms coupled to on-chip resonators, represents a prime candidate to implement the scalable quantum computing architecture because of the presence of good tunability and controllability. Furthermore, recent advances have pushed the technology towards the ultrastrong coupling regime of light-matter interaction, where the qubit-resonator coupling strength reaches a considerable fraction of the resonator frequency. Here, we propose a qubit-resonator system operating in that regime, as a quantum memory device and study the storage and retrieval of quantum information in and from the Z(2) parity-protected quantum memory, within experimentally feasible schemes. We are also convinced that our proposal might pave a way to realize a scalable quantum random-access memory due to its fast storage and readout performances.