1000 resultados para Quake Lake
Resumo:
info:eu-repo/semantics/published
Resumo:
Many metals have serious toxic effects when ingested by aquatic organisms, and the process of bioaccumulation intensifies this problem. A better understanding of bioaccumulation trends of anthropogenically introduced metals in freshwater food webs is necessary for the development of effective management strategies to protect aquatic organisms, as well as organisms (including humans) that consume top-predator fish in these food webs. Various fish species representing different trophic levels of a pelagic food chain were sampled from Lake Champlain (VT/NY). Atomic absorption spectrometry (AAS) was used to determine levels of chromium, copper, cobalt, cadmium, lead, zinc, nickel, rubidium, cesium and potassium in the fish samples. Metal concentrations for chromium, cobalt, nickel, cesium, cadmium (<5.0 ppm) and lead (<10.0 ppm) were found to be all below detection limits. Carbon and nitrogen isotopic ratios were analyzed to determine the trophic relationship of each fish species. Stable isotope and AAS metal data were used in tandem to produce linear regressions for each metal against trophic level to assess biomagnification. Both potassium and zinc showed no biomagnification because they are homeostatically regulated essential trace metals. Copper was under the detection limits for all fish species with the exception of the sea lamprey; but showed a significant biodiminution among the invertebrates and lamprey. Rubidium, a rarely studied metal, was shown to increase with trophic level in a marginally significant linear relationship suggesting biomagnification is possible where more trophic levels are sampled.
Resumo:
The intercorrelation of palaeoclimate events from various studies is often hindered by a lack of precise chronological control. Tephra isochrons can overcome this problem by providing direct site linkages. This paper outlines a study of Holocene peat and diatomite deposits that accumulated within the floodplain of Lough Neagh, Northern Ireland. The Icelandic Hekla 4 tephra has been identified at the base of diatomite deposits at a number of sites and provides firm dating evidence for a widespread flooding event in the area at ca. 2300 BC. The evidence is consistent with other studies in Ireland and elsewhere for increased wetness at this time. The results demonstrate that the terrestrial deposits around Lough Neagh contain an important record of Holocene lake-level change. Dendrochronological evidence from the Lough Neagh area provides additional information about lake-level fluctuations over the past two millennia.
Resumo:
Freshwater populations of three-spined sticklebacks (Gasterosteus aculeatus) in northern Germany are found as distinct lake and river ecotypes. Adaptation to habitat-specific parasites might influence immune capabilities of stickleback ecotypes. Here, naive laboratory-bred sticklebacks from lake and river populations were exposed reciprocally to parasite environments in a lake and a river habitat. Sticklebacks exposed to lake conditions were infected with higher numbers of parasite species when compared with the river. River sticklebacks in the lake had higher parasite loads than lake sticklebacks in the same habitat. Respiratory burst, granulocyte counts and lymphocyte proliferation of head kidney leucocytes were increased in river sticklebacks exposed to lake when compared with river conditions. Although river sticklebacks exposed to lake conditions showed elevated activation of their immune system, parasites could not be diminished as effectively as by lake sticklebacks in their native habitat. River sticklebacks seem to have reduced their immune-competence potential due to lower parasite diversity in rivers
Resumo:
Analysis of carbon and nitrogen stable isotopes has allowed freshwater ecologists to examine lake food webs in increasing detail. Many such studies have highlighted the existence of separate within-lake pelagic and benthic-littoral food webs but are typically conducted on large (> 10 km2) lakes, whereas the majority of lakes are actually relatively small. We used stable isotope analysis (δ13C & δ15N) to examine trophic interactions between fish and their prey in Plu�see, as an example of a small, stratifying lake, and to determine whether separate pelagic/benthic-littoral food webs could be distinguished in such systems. Our results indicate that the Plu�see food web was complicated, and due to extensive intra-annual isotopic variation in zooplankton (e.g. cladoceran δ13C annual range = 25.6�), it may be impossible to definitively assign consumers from small, eutrophic stratified lakes to pelagic or benthic-littoral food webs. We present evidence that some components of the Plu�see food web (large bream) may be subsidised by carbon of methanogenic origin.
Resumo:
A 1.2 m sediment core from Lake Forsyth, Canterbury, New Zealand, records the development of the catchment/lake system over the last 7000 years, and its response to anthropogenic disturbance following European settlement c. 1840 AD. Pollen was used to reconstruct catchment vegetation history, while foraminifera, chironomids, Trichoptera, and the abundance of Pediastrum simplex colonies were used to infer past environmental conditions within the lake. The basal 30 cm of core records the transition of the Lake Forsyth Basin from a tidal embayment to a brackish coastal lake. Timing of closure of the lake mouth could not be accurately determined, but it appears that Lake Forsyth had stabilised as a slightly brackish, oligo mesotrophic shallow lake by about 500 years BP. Major deforestation occurred on Banks Peninsula between 1860 AD and 1890 AD. This deforestation is marked by the rapid decline in the main canopy trees (Prumnopitys taxifolia (matai) and Podocarpus totara/hallii (totara/mountain totara), an increase in charcoal, and the appearance of grasses. At around 1895 AD, pine appears in the record while a willow (Salix spp.) appears somewhat later. Redundancy analysis (RDA) of the pollen and aquatic species data revealed a significant relationship between regional vegetation and the abundance of aquatic taxa, with the percentage if disturbance pollen explaining most (14.8%) of the constrained variation in the aquatic species data. Principle components analysis (PCA) of aquatic species data revealed that the most significant period of rapid biological change in the lakes history corresponded to the main period of human disturbance in the catchment. Deforestation led to increased sediment and nutrient input into the lake which was accompanied by a major reduction in salinity. These changes are inferred from the appearance and proliferation of freshwater algae (Pediastrum simplex), an increase in abundance and diversity of chironomids, and the abundance of cases and remains from the larvae of the caddisfly, Oecetis unicolor. Eutrophication accompanied by increasing salinity of the lake is inferred from a significant peak and then decline of P. simplex, and a reduction in the abundance and diversity of aquatic invertebrates. The artificial opening of the lake to the Pacific Ocean, which began in the late 1800s, is the likely cause of the recent increase in salinity. An increase in salinity may have also encouraged blooms of the halotolerant and hepatotoxic cyanobacteria Nodularia spumigena.
Resumo:
The analysis of chironomid taxa and environmental datasets from 46 New Zealand lakes identified temperature (February mean air temperature) and lake production (chlorophyll a (Chl a)) as the main drivers of chironomid distribution. Temperature was the strongest driver of chironomid distribution and consequently produced the most robust inference models. We present two possible temperature transfer functions from this dataset. The most robust model (weighted averaging-partial least squares (WA-PLS), n = 36) was based on a dataset with the most productive (Chl a > 10 lg l)1) lakes removed. This model produced a coefficient of determination (r2 jack) of 0.77, and a root mean squared error of prediction (RMSEPjack) of 1.31C. The Chl a transfer function (partial least squares (PLS), n = 37) was far less reliable, with an r2 jack of 0.49 and an RMSEPjack of 0.46 Log10lg l)1. Both of these transfer functions could be improved by a revision of the taxonomy for the New Zealand chironomid taxa, particularly the genus Chironomus. The Chironomus morphotype was common in high altitude, cool, oligotrophic lakes and lowland, warm, eutrophic lakes. This could reflect the widespread distribution of one eurythermic species, or the collective distribution of a number of different Chironomus species with more limited tolerances. The Chl a transfer function could also be improved by inputting mean Chl a values into the inference model rather than the spot measurements that were available for this study.