874 resultados para Process parameters
Resumo:
With a view to assessing the vulnerability of columns to low elevation vehicular impacts, a non-linear explicit numerical model has been developed and validated using existing experimental results. The numerical model accounts for the effects of strain rate and confinement of the reinforced concrete, which are fundamental to the successful prediction of the impact response. The sensitivity of the material model parameters used for the validation is also scrutinised and numerical tests are performed to examine their suitability to simulate the shear failure conditions. Conflicting views on the strain gradient effects are discussed and the validation process is extended to investigate the ability of the equations developed under concentric loading conditions to simulate flexural failure events. Experimental data on impact force–time histories, mid span and residual deflections and support reactions have been verified against corresponding numerical results. A universal technique which can be applied to determine the vulnerability of the impacted columns against collisions with new generation vehicles under the most common impact modes is proposed. Additionally, the observed failure characteristics of the impacted columns are explained using extended outcomes. Based on the overall results, an analytical method is suggested to quantify the vulnerability of the columns.
Resumo:
Creating sustainable urban environments is one of the challenging issues that need a clear vision and implementation strategies involving changes in governmental values and decision making process for local governments. Particularly, internalisation of environmental externalities of daily urban activities (e.g. manufacturing, transportation and so on) has immense importance for which local policies are formulated to provide better living conditions for the people inhabiting urban areas. Even if environmental problems are defined succinctly by various stakeholders, complicated nature of sustainability issues demand a structured evaluation strategy and well-defined sustainability parameters for efficient and effective policy making. Following this reasoning, this study involves assessment of sustainability performance of urban settings mainly focusing on environmental problems caused by rapid urban expansion and transformation. By taking into account land-use and transportation interaction, it tries to reveal how future urban developments would alter daily urban travel behaviour of people and affect the urban and natural environments. The paper introduces a grid-based indexing method developed for this research and trailed as a GIS-based decision support tool to analyse and model selected spatial and aspatial indicators of sustainability in the Gold Coast. This process reveals parameters of site specific relationship among selected indicators that are used to evaluate index-based performance characteristics of the area. The evaluation is made through an embedded decision support module by assigning relative weights to indicators. Resolution of selected grid-based unit of analysis provides insights about service level of projected urban development proposals at a disaggregate level, such as accessibility to transportation and urban services, and pollution. The paper concludes by discussing the findings including the capacity of the decision support system to assist decision-makers in determining problematic areas and developing intervention policies for sustainable outcomes of future developments.
Resumo:
Our objective was to determine the factors that lead users to continue working with process modeling grammars after their initial adoption. We examined the explanatory power of three theoretical models of IT usage by applying them to two popular process modeling grammars. We found that a hybrid model of technology acceptance and expectation-confirmation best explained user intentions to continue using the grammars. We examined differences in the model results, and used them to provide three contributions. First, the study confirmed the applicability of IT usage models to the domain of process modeling. Second, we discovered that differences in continued usage intentions depended on the grammar type instead of the user characteristics. Third, we suggest implications and practice.
Resumo:
Technology and Nursing Practice explains and critically engages with the practice implications of technology for nursing. It takes a broad view of technology, covering not only health informatics, but also 'tele-nursing' and the use of equipment in clinical practice.
Resumo:
A membrane filtration plant using suitable micro or ultra-filtration membranes has the potential to significantly increase pan stage capacity and improve sugar quality. Previous investigations by SRI and others have shown that membranes will remove polysaccharides, turbidity and colloidal impurities and result in lower viscosity syrups and molasses. However, the conclusion from those investigations was that membrane filtration was not economically viable. A comprehensive assessment of current generation membrane technology was undertaken by SRI. With the aid of two pilot plants provided by Applexion and Koch Membrane Systems, extensive trials were conducted at an Australian factory using clarified juice at 80–98°C as feed to each pilot plant. Conditions were varied during the trials to examine the effect of a range of operating parameters on the filtering characteristics of each of the membranes. These parameters included feed temperature and pressure, flow velocity, soluble solids and impurity concentrations. The data were then combined to develop models to predict the filtration rate (or flux) that could be expected for nominated operating conditions. The models demonstrated very good agreement with the data collected during the trials. The trials also identified those membranes that provided the highest flux levels per unit area of membrane surface for a nominated set of conditions. Cleaning procedures were developed that ensured the water flux level was recovered following a clean-in-place process. Bulk samples of clarified juice and membrane filtered juice from each pilot were evaporated to syrup to quantify the gain in pan stage productivity that results from the removal of high molecular weight impurities by membrane filtration. The results are in general agreement with those published by other research groups.
Resumo:
The ISSCT Process Section workshop held in Réunion 20–23 October 2008 was attended by 51 delegates from 10 countries. The theme was Green cane impact on sugar processing. The workshop provided a valuable and timely opportunity to review and discuss the impact on factory operations and performance from a green cane supply that could include significant levels of trash. It was particularly relevant to those mills that were considering options to boost their biomass intake for increased co-generation capacity. Several of the speakers related their experiences with processing ‘whole of crop’ cane supplies through the factory. Speakers detailed the problems and increased losses that were incurred when processing cane with high trash levels. The consensus of the delegates was that the best scenario would involve a cane-cleaning plant at the factory so that only clean cane would be processed through the factory. The forum recommended that more research was required to address the issues of increased impurities in the process streams associated with high trash levels. Site visits to the two factories and a cane-delivery station were arranged as part of the workshop.
Resumo:
This paper takes Kent and Taylor’s (2002) call to develop a dialogic theory of public relations and suggests that a necessary first step is the modelling of the process of dialogic communication in public relations. In order to achieve this, extant literature from a range of fields is reviewed, seeking to develop a definition of dialogic communication that is meaningful to the practice of contemporary public relations. A simple transmission model of communication is used as a starting point. This is synthesised with concepts relating specifically to dialogue, taken here in its broadest sense rather than defined as any one particular outcome. The definition that emerges from this review leads to the conclusion that dialogic communication in public relations involves the interaction of three roles – those of sender, receiver, and responder. These three roles are shown to be adopted at different times by both participants involved in dialogic communication. It is further suggested that variations occur in how these roles are conducted: the sender and receiver roles can be approached in a passive or an active way, while the responder role can be classified as being either resistant or responsive to the information received in dialogic communication. The final modelling of the definition derived provides a framework which can be tested in the field to determine whether variations in the conduct of the roles in dialogic communication actually exist, and if so, whether they can be linked to the different types of outcome from dialogic communication identified previously in the literature.
Resumo:
Longitudinal data, where data are repeatedly observed or measured on a temporal basis of time or age provides the foundation of the analysis of processes which evolve over time, and these can be referred to as growth or trajectory models. One of the traditional ways of looking at growth models is to employ either linear or polynomial functional forms to model trajectory shape, and account for variation around an overall mean trend with the inclusion of random eects or individual variation on the functional shape parameters. The identification of distinct subgroups or sub-classes (latent classes) within these trajectory models which are not based on some pre-existing individual classification provides an important methodology with substantive implications. The identification of subgroups or classes has a wide application in the medical arena where responder/non-responder identification based on distinctly diering trajectories delivers further information for clinical processes. This thesis develops Bayesian statistical models and techniques for the identification of subgroups in the analysis of longitudinal data where the number of time intervals is limited. These models are then applied to a single case study which investigates the neuropsychological cognition for early stage breast cancer patients undergoing adjuvant chemotherapy treatment from the Cognition in Breast Cancer Study undertaken by the Wesley Research Institute of Brisbane, Queensland. Alternative formulations to the linear or polynomial approach are taken which use piecewise linear models with a single turning point, change-point or knot at a known time point and latent basis models for the non-linear trajectories found for the verbal memory domain of cognitive function before and after chemotherapy treatment. Hierarchical Bayesian random eects models are used as a starting point for the latent class modelling process and are extended with the incorporation of covariates in the trajectory profiles and as predictors of class membership. The Bayesian latent basis models enable the degree of recovery post-chemotherapy to be estimated for short and long-term followup occasions, and the distinct class trajectories assist in the identification of breast cancer patients who maybe at risk of long-term verbal memory impairment.
Resumo:
Accurate estimation of input parameters is essential to ensure the accuracy and reliability of hydrologic and water quality modelling. Calibration is an approach to obtain accurate input parameters for comparing observed and simulated results. However, the calibration approach is limited as it is only applicable to catchments where monitoring data is available. Therefore, methodology to estimate appropriate model input parameters is critical, particularly for catchments where monitoring data is not available. In the research study discussed in the paper, pollutant build-up parameters derived from catchment field investigations and model calibration using MIKE URBAN are compared for three catchments in Southeast Queensland, Australia. Additionally, the sensitivity of MIKE URBAN input parameters was analysed. It was found that Reduction Factor is the most sensitive parameter for peak flow and total runoff volume estimation whilst Build-up rate is the most sensitive parameter for TSS load estimation. Consequently, these input parameters should be determined accurately in hydrologic and water quality simulations using MIKE URBAN. Furthermore, an empirical equation for Southeast Queensland, Australia for the conversion of build-up parameters derived from catchment field investigations as MIKE URBAN input build-up parameters was derived. This will provide guidance for allowing for regional variations in the estimation of input parameters for catchment modelling using MIKE URBAN where monitoring data is not available.
Resumo:
An Asset Management (AM) life-cycle constitutes a set of processes that align with the development, operation and maintenance of assets, in order to meet the desired requirements and objectives of the stake holders of the business. The scope of AM is often broad within an organization due to the interactions between its internal elements such as human resources, finance, technology, engineering operation, information technology and management, as well as external elements such as governance and environment. Due to the complexity of the AM processes, it has been proposed that in order to optimize asset management activities, process modelling initiatives should be adopted. Although organisations adopt AM principles and carry out AM initiatives, most do not document or model their AM processes, let alone enacting their processes (semi-) automatically using a computer-supported system. There is currently a lack of knowledge describing how to model AM processes through a methodical and suitable manner so that the processes are streamlines and optimized and are ready for deployment in a computerised way. This research aims to overcome this deficiency by developing an approach that will aid organisations in constructing AM process models quickly and systematically whilst using the most appropriate techniques, such as workflow technology. Currently, there is a wealth of information within the individual domains of AM and workflow. Both fields are gaining significant popularity in many industries thus fuelling the need for research in exploring the possible benefits of their cross-disciplinary applications. This research is thus inspired to investigate these two domains to exploit the application of workflow to modelling and execution of AM processes. Specifically, it will investigate appropriate methodologies in applying workflow techniques to AM frameworks. One of the benefits of applying workflow models to AM processes is to adapt and enable both ad-hoc and evolutionary changes over time. In addition, this can automate an AM process as well as to support the coordination and collaboration of people that are involved in carrying out the process. A workflow management system (WFMS) can be used to support the design and enactment (i.e. execution) of processes and cope with changes that occur to the process during the enactment. So far few literatures can be found in documenting a systematic approach to modelling the characteristics of AM processes. In order to obtain a workflow model for AM processes commonalities and differences between different AM processes need to be identified. This is the fundamental step in developing a conscientious workflow model for AM processes. Therefore, the first stage of this research focuses on identifying the characteristics of AM processes, especially AM decision making processes. The second stage is to review a number of contemporary workflow techniques and choose a suitable technique for application to AM decision making processes. The third stage is to develop an intermediate ameliorated AM decision process definition that improves the current process description and is ready for modelling using the workflow language selected in the previous stage. All these lead to the fourth stage where a workflow model for an AM decision making process is developed. The process model is then deployed (semi-) automatically in a state-of-the-art WFMS demonstrating the benefits of applying workflow technology to the domain of AM. Given that the information in the AM decision making process is captured at an abstract level within the scope of this work, the deployed process model can be used as an executable guideline for carrying out an AM decision process in practice. Moreover, it can be used as a vanilla system that, once being incorporated with rich information from a specific AM decision making process (e.g. in the case of a building construction or a power plant maintenance), is able to support the automation of such a process in a more elaborated way.
Resumo:
This thesis examines the advanced North American environmental mitigation schemes for their applicability to Queensland. Compensatory wetland mitigation banking, in particular, is concerned with in-perpetuity management and protection - the basic concerns of the Queensland public about its unique environment. The process has actively engaged the North American market and become a thriving industry that (for the most part) effectively designs, creates and builds (or enhances) environmental habitat. A methodology was designed to undertake a comprehensive review of the history, evolution and concepts of the North American wetland mitigation banking system - before and after the implementation of a significant new compensatory wetland mitigation banking regulation in 2008. The Delphi technique was then used to determine the principles and working components of wetland mitigation banking. Results were then applied to formulate a questionnaire to review Australian marketbased instruments (including offsetting policies) against these North American principles. Following this, two case studies established guiding principles for implementation based on two components of the North American wetland mitigation banking program. The subsequent outcomes confirmed that environmental banking is a workable concept in North America and that it is worth applying in Queensland. The majority of offsetting policies in Australia have adopted some principles of the North American mitigation programs. Examination reveals that however, they fail to provide adequate incentives for private landowners to participate because the essential trading mechanisms are not employed. Much can thus be learnt from the North American situation - where private enterprise has devised appropriate free market concepts. The consequent environmental banking process (as adapted from the North American programs) should be implemented in Queensland. It can then focus here on engaging the private sector, where the majority of naturally productive lands are managed.
Resumo:
World economies increasingly demand reliable and economical power supply and distribution. To achieve this aim the majority of power systems are becoming interconnected, with several power utilities supplying the one large network. One problem that occurs in a large interconnected power system is the regular occurrence of system disturbances which can result in the creation of intra-area oscillating modes. These modes can be regarded as the transient responses of the power system to excitation, which are generally characterised as decaying sinusoids. For a power system operating ideally these transient responses would ideally would have a “ring-down” time of 10-15 seconds. Sometimes equipment failures disturb the ideal operation of power systems and oscillating modes with ring-down times greater than 15 seconds arise. The larger settling times associated with such “poorly damped” modes cause substantial power flows between generation nodes, resulting in significant physical stresses on the power distribution system. If these modes are not just poorly damped but “negatively damped”, catastrophic failures of the system can occur. To ensure system stability and security of large power systems, the potentially dangerous oscillating modes generated from disturbances (such as equipment failure) must be quickly identified. The power utility must then apply appropriate damping control strategies. In power system monitoring there exist two facets of critical interest. The first is the estimation of modal parameters for a power system in normal, stable, operation. The second is the rapid detection of any substantial changes to this normal, stable operation (because of equipment breakdown for example). Most work to date has concentrated on the first of these two facets, i.e. on modal parameter estimation. Numerous modal parameter estimation techniques have been proposed and implemented, but all have limitations [1-13]. One of the key limitations of all existing parameter estimation methods is the fact that they require very long data records to provide accurate parameter estimates. This is a particularly significant problem after a sudden detrimental change in damping. One simply cannot afford to wait long enough to collect the large amounts of data required for existing parameter estimators. Motivated by this gap in the current body of knowledge and practice, the research reported in this thesis focuses heavily on rapid detection of changes (i.e. on the second facet mentioned above). This thesis reports on a number of new algorithms which can rapidly flag whether or not there has been a detrimental change to a stable operating system. It will be seen that the new algorithms enable sudden modal changes to be detected within quite short time frames (typically about 1 minute), using data from power systems in normal operation. The new methods reported in this thesis are summarised below. The Energy Based Detector (EBD): The rationale for this method is that the modal disturbance energy is greater for lightly damped modes than it is for heavily damped modes (because the latter decay more rapidly). Sudden changes in modal energy, then, imply sudden changes in modal damping. Because the method relies on data from power systems in normal operation, the modal disturbances are random. Accordingly, the disturbance energy is modelled as a random process (with the parameters of the model being determined from the power system under consideration). A threshold is then set based on the statistical model. The energy method is very simple to implement and is computationally efficient. It is, however, only able to determine whether or not a sudden modal deterioration has occurred; it cannot identify which mode has deteriorated. For this reason the method is particularly well suited to smaller interconnected power systems that involve only a single mode. Optimal Individual Mode Detector (OIMD): As discussed in the previous paragraph, the energy detector can only determine whether or not a change has occurred; it cannot flag which mode is responsible for the deterioration. The OIMD seeks to address this shortcoming. It uses optimal detection theory to test for sudden changes in individual modes. In practice, one can have an OIMD operating for all modes within a system, so that changes in any of the modes can be detected. Like the energy detector, the OIMD is based on a statistical model and a subsequently derived threshold test. The Kalman Innovation Detector (KID): This detector is an alternative to the OIMD. Unlike the OIMD, however, it does not explicitly monitor individual modes. Rather it relies on a key property of a Kalman filter, namely that the Kalman innovation (the difference between the estimated and observed outputs) is white as long as the Kalman filter model is valid. A Kalman filter model is set to represent a particular power system. If some event in the power system (such as equipment failure) causes a sudden change to the power system, the Kalman model will no longer be valid and the innovation will no longer be white. Furthermore, if there is a detrimental system change, the innovation spectrum will display strong peaks in the spectrum at frequency locations associated with changes. Hence the innovation spectrum can be monitored to both set-off an “alarm” when a change occurs and to identify which modal frequency has given rise to the change. The threshold for alarming is based on the simple Chi-Squared PDF for a normalised white noise spectrum [14, 15]. While the method can identify the mode which has deteriorated, it does not necessarily indicate whether there has been a frequency or damping change. The PPM discussed next can monitor frequency changes and so can provide some discrimination in this regard. The Polynomial Phase Method (PPM): In [16] the cubic phase (CP) function was introduced as a tool for revealing frequency related spectral changes. This thesis extends the cubic phase function to a generalised class of polynomial phase functions which can reveal frequency related spectral changes in power systems. A statistical analysis of the technique is performed. When applied to power system analysis, the PPM can provide knowledge of sudden shifts in frequency through both the new frequency estimate and the polynomial phase coefficient information. This knowledge can be then cross-referenced with other detection methods to provide improved detection benchmarks.