946 resultados para Predictive Models
Resumo:
Neste artigo, formulações analíticas são desenvolvidas para calcular a resistência à punção de lajes lisas de concreto reforçado com fibras de aço (CRFA) e que também são reforçadas à flexão por barras de aço (reforço convencional). A partir de análises estatísticas sobre um banco de dados que reúne resultados experimentais de caracterização do comportamento pós-fissuração do CRFA, equações são estabelecidas para avaliar parâmetros da resistência residual à tração na flexão (fRi) a partir de informações fundamentais que caracterizam a fibra de aço. O parâmetro de resistência fRi, proposto pelo ModelCode10 foi usado para definir a lei tensão-abertura da fissura (σ-w) que simula o mecanismo de reforço da fibra em um material cimentício. A segunda parte do artigo descreve uma formulação analítica baseada nos conceitos propostos por Muttoni e Ruiz, onde a lei σ-w é convenientemente integrada para simular a contribuição da fibra de aço na resistência à punção de lajes em CRFA. A partir de um banco de dados, composto de 154 ensaios de punção, o bom desempenho da proposta apresentada é demonstrado. O desempenho do modelo também é evidenciado comparando-se os seus resultados a outros modelos.
Resumo:
Developing and implementing data-oriented workflows for data migration processes are complex tasks involving several problems related to the integration of data coming from different schemas. Usually, they involve very specific requirements - every process is almost unique. Having a way to abstract their representation will help us to better understand and validate them with business users, which is a crucial step for requirements validation. In this demo we present an approach that provides a way to enrich incrementally conceptual models in order to support an automatic way for producing their correspondent physical implementation. In this demo we will show how B2K (Business to Kettle) system works transforming BPMN 2.0 conceptual models into Kettle data-integration executable processes, approaching the most relevant aspects related to model design and enrichment, model to system transformation, and system execution.
Resumo:
ETL conceptual modeling is a very important activity in any data warehousing system project implementation. Owning a high-level system representation allowing for a clear identification of the main parts of a data warehousing system is clearly a great advantage, especially in early stages of design and development. However, the effort to model conceptually an ETL system rarely is properly rewarded. Translating ETL conceptual models directly into something that saves work and time on the concrete implementation of the system process it would be, in fact, a great help. In this paper we present and discuss a hybrid approach to this problem, combining the simplicity of interpretation and power of expression of BPMN on ETL systems conceptualization with the use of ETL patterns to produce automatically an ETL skeleton, a first prototype system, which has the ability to be executed in a commercial ETL tool like Kettle.
Resumo:
This work reports the implementation and verification of a new so lver in OpenFOAM® open source computational library, able to cope with integral viscoelastic models based on the integral upper-convected Maxwell model. The code is verified through the comparison of its predictions with analytical solutions and numerical results obtained with the differential upper-convected Maxwell model
Resumo:
PhD Thesis in Bioengineering
Resumo:
In this study, we concentrate on modelling gross primary productivity using two simple approaches to simulate canopy photosynthesis: "big leaf" and "sun/shade" models. Two approaches for calibration are used: scaling up of canopy photosynthetic parameters from the leaf to the canopy level and fitting canopy biochemistry to eddy covariance fluxes. Validation of the models is achieved by using eddy covariance data from the LBA site C14. Comparing the performance of both models we conclude that numerically (in terms of goodness of fit) and qualitatively, (in terms of residual response to different environmental variables) sun/shade does a better job. Compared to the sun/shade model, the big leaf model shows a lower goodness of fit and fails to respond to variations in the diffuse fraction, also having skewed responses to temperature and VPD. The separate treatment of sun and shade leaves in combination with the separation of the incoming light into direct beam and diffuse make sun/shade a strong modelling tool that catches more of the observed variability in canopy fluxes as measured by eddy covariance. In conclusion, the sun/shade approach is a relatively simple and effective tool for modelling photosynthetic carbon uptake that could be easily included in many terrestrial carbon models.
Resumo:
This review deals with the recent developments and present status of the theoretical models for the simulation of the performance of lithium ion batteries. Preceded by a description of the main materials used for each of the components of a battery -anode, cathode and separator- and how material characteristics affect battery performance, a description of the main theoretical models describing the operation and performance of a battery are presented. The influence of the most relevant parameters of the models, such as boundary conditions, geometry and material characteristics are discussed. Finally, suggestions for future work are proposed.
Resumo:
Programa Doutoral em Matemática e Aplicações.
Resumo:
Extreme value models are widely used in different areas. The Birnbaum–Saunders distribution is receiving considerable attention due to its physical arguments and its good properties. We propose a methodology based on extreme value Birnbaum–Saunders regression models, which includes model formulation, estimation, inference and checking. We further conduct a simulation study for evaluating its performance. A statistical analysis with real-world extreme value environmental data using the methodology is provided as illustration.
Resumo:
Invasive aspergillosis (IA) is a life-threatening fungal disease commonly diagnosed among individuals with immunological deficits, namely hematological patients undergoing chemotherapy or allogeneic hematopoietic stem cell transplantation. Vaccines are not available, and despite the improved diagnosis and antifungal therapy, the treatment of IA is associated with a poor outcome. Importantly, the risk of infection and its clinical outcome vary significantly even among patients with similar predisposing clinical factors and microbiological exposure. Recent insights into antifungal immunity have further highlighted the complexity of host-fungus interactions and the multiple pathogen-sensing systems activated to control infection. How to decode this information into clinical practice remains however, a challenging issue in medical mycology. Here, we address recent advances in our understanding of the host-fungus interaction and discuss the application of this knowledge in potential strategies with the aim of moving toward personalized diagnostics and treatment (theranostics) in immunocompromised patients. Ultimately, the integration of individual traits into a clinically applicable process to predict the risk and progression of disease, and the efficacy of antifungal prophylaxis and therapy, holds the promise of a pioneering innovation benefiting patients at risk of IA.
Resumo:
We survey results about exact cylindrically symmetric models of gravitational collapse in General Relativity. We focus on models which result from the matching of two spacetimes having collapsing interiors which develop trapped surfaces and vacuum exteriors containing gravitational waves. We collect some theorems from the literature which help to decide a priori about eventual spacetime matchings. We revise, in more detail, some toy models which include some of the main mathematical and physical issues that arise in this context, and compute the gravitational energy flux through the matching boundary of a particular collapsing region. Along the way, we point out several interesting open problems.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
The research aimed to establish tyre-road noise models by using a Data Mining approach that allowed to build a predictive model and assess the importance of the tested input variables. The data modelling took into account three learning algorithms and three metrics to define the best predictive model. The variables tested included basic properties of pavement surfaces, macrotexture, megatexture, and uneven- ness and, for the first time, damping. Also, the importance of those variables was measured by using a sensitivity analysis procedure. Two types of models were set: one with basic variables and another with complex variables, such as megatexture and damping, all as a function of vehicles speed. More detailed models were additionally set by the speed level. As a result, several models with very good tyre-road noise predictive capacity were achieved. The most relevant variables were Speed, Temperature, Aggregate size, Mean Profile Depth, and Damping, which had the highest importance, even though influenced by speed. Megatexture and IRI had the lowest importance. The applicability of the models developed in this work is relevant for trucks tyre-noise prediction, represented by the AVON V4 test tyre, at the early stage of road pavements use. Therefore, the obtained models are highly useful for the design of pavements and for noise prediction by road authorities and contractors.
Resumo:
In this article, we develop a specification technique for building multiplicative time-varying GARCH models of Amado and Teräsvirta (2008, 2013). The variance is decomposed into an unconditional and a conditional component such that the unconditional variance component is allowed to evolve smoothly over time. This nonstationary component is defined as a linear combination of logistic transition functions with time as the transition variable. The appropriate number of transition functions is determined by a sequence of specification tests. For that purpose, a coherent modelling strategy based on statistical inference is presented. It is heavily dependent on Lagrange multiplier type misspecification tests. The tests are easily implemented as they are entirely based on auxiliary regressions. Finite-sample properties of the strategy and tests are examined by simulation. The modelling strategy is illustrated in practice with two real examples: an empirical application to daily exchange rate returns and another one to daily coffee futures returns.
Resumo:
Dissertação de mestrado em Bioquímica Aplicada – Biomedicina