850 resultados para Prediction model
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Aquafeed production faces global issues related to availability of feed ingredients. Feed manufacturers require greater flexibility in order to develop nutritional and cost-effective formulations that take into account nutrient content and availability of ingredients. The search for appropriate ingredients requires detailed screening of their potential nutritional value and variability at the industrial level. In vitro digestion of feedstuffs by enzymes extracted from the target species has been correlated with apparent protein digestibility (APD) in fish and shrimp species. The present study verified the relationship between APD and in vitro degree of protein hydrolysis (DH) with Litopenaeus vannamei hepatopancreas enzymes in several different ingredients (n = 26): blood meals, casein, corn gluten meal, crab meal, distiller`s dried grains with solubles, feather meal, fish meals, gelatin, krill meals, poultry by-product meal, soybean meals, squid meals and wheat gluten. The relationship between APD and DH was further verified in diets formulated with these ingredients at 30% inclusion into a reference diet. APD was determined in vivo (30.1 +/- 0.5 degrees C, 32.2 +/- 0.4%.) with juvenile L vannamei (9 to 12 g) after placement of test ingredients into a reference diet (35 g kg(-1) CP: 8.03 g kg(-1) lipid; 2.01 kcal g(-1)) with chromic oxide as the inert marker. In vitro DH was assessed in ingredients and diets with standardized hepatopancreas enzymes extracted from pond-reared shrimp. The DH of ingredients was determined under different assay conditions to check for the most suitable in vitro protocol for APD prediction: different batches of enzyme extracts (HPf5 or HPf6), temperatures (25 or 30 degrees C) and enzyme activity (azocasein): crude protein ratios (4 U: 80 mg CP or 4 U: 40 mg CP). DH was not affected by ingredient proximate composition. APD was significantly correlated to DH in regressions considering either ingredients or diets. The relationships between APD and DH of the ingredients could be suitably adjusted to a Rational Function (y = (a + bx)/(1 + cx + dx2), n = 26. Best in vitro APD predictions were obtained at 25 degrees C, 4 U: 80 mg CP both for ingredients (R(2) = 0.86: P = 0.001) and test diets (R(2) = 0.96; P = 0.007). The regression model including all 26 ingredients generated higher prediction residuals (i.e., predicted APD - determined APD) for corn gluten meal, feather meal. poultry by-product meal and krill flour. The remaining test ingredients presented mean prediction residuals of 3.5 points. A model including only ingredients with APD>80% showed higher prediction precision (R(2) = 0.98: P = 0.000004; n = 20) with average residual of 1.8 points. Predictive models including only ingredients from the same origin (e.g., marine-based, R(2) = 0.98; P = 0.033) also displayed low residuals. Since in vitro techniques have been usually validated through regressions against in vivo APD, the DH predictive capacity may depend on the consistency of the in vivo methodology. Regressions between APD and DH suggested a close relationship between peptide bond breakage by hepatopancreas digestive proteases and the apparent nitrogen assimilation in shrimp, and this may be a useful tool to provide rapid nutritional information. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Backgrounds Ea aims: The boundaries between the categories of body composition provided by vectorial analysis of bioimpedance are not well defined. In this paper, fuzzy sets theory was used for modeling such uncertainty. Methods: An Italian database with 179 cases 18-70 years was divided randomly into developing (n = 20) and testing samples (n = 159). From the 159 registries of the testing sample, 99 contributed with unequivocal diagnosis. Resistance/height and reactance/height were the input variables in the model. Output variables were the seven categories of body composition of vectorial analysis. For each case the linguistic model estimated the membership degree of each impedance category. To compare such results to the previously established diagnoses Kappa statistics was used. This demanded singling out one among the output set of seven categories of membership degrees. This procedure (defuzzification rule) established that the category with the highest membership degree should be the most likely category for the case. Results: The fuzzy model showed a good fit to the development sample. Excellent agreement was achieved between the defuzzified impedance diagnoses and the clinical diagnoses in the testing sample (Kappa = 0.85, p < 0.001). Conclusions: fuzzy linguistic model was found in good agreement with clinical diagnoses. If the whole model output is considered, information on to which extent each BIVA category is present does better advise clinical practice with an enlarged nosological framework and diverse therapeutic strategies. (C) 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
A data set of a commercial Nellore beef cattle selection program was used to compare breeding models that assumed or not markers effects to estimate the breeding values, when a reduced number of animals have phenotypic, genotypic and pedigree information available. This herd complete data set was composed of 83,404 animals measured for weaning weight (WW), post-weaning gain (PWG), scrotal circumference (SC) and muscle score (MS), corresponding to 116,652 animals in the relationship matrix. Single trait analyses were performed by MTDFREML software to estimate fixed and random effects solutions using this complete data. The additive effects estimated were assumed as the reference breeding values for those animals. The individual observed phenotype of each trait was adjusted for fixed and random effects solutions, except for direct additive effects. The adjusted phenotype composed of the additive and residual parts of observed phenotype was used as dependent variable for models' comparison. Among all measured animals of this herd, only 3160 animals were genotyped for 106 SNP markers. Three models were compared in terms of changes on animals' rank, global fit and predictive ability. Model 1 included only polygenic effects, model 2 included only markers effects and model 3 included both polygenic and markers effects. Bayesian inference via Markov chain Monte Carlo methods performed by TM software was used to analyze the data for model comparison. Two different priors were adopted for markers effects in models 2 and 3, the first prior assumed was a uniform distribution (U) and, as a second prior, was assumed that markers effects were distributed as normal (N). Higher rank correlation coefficients were observed for models 3_U and 3_N, indicating a greater similarity of these models animals' rank and the rank based on the reference breeding values. Model 3_N presented a better global fit, as demonstrated by its low DIC. The best models in terms of predictive ability were models 1 and 3_N. Differences due prior assumed to markers effects in models 2 and 3 could be attributed to the better ability of normal prior in handle with collinear effects. The models 2_U and 2_N presented the worst performance, indicating that this small set of markers should not be used to genetically evaluate animals with no data, since its predictive ability is restricted. In conclusion, model 3_N presented a slight superiority when a reduce number of animals have phenotypic, genotypic and pedigree information. It could be attributed to the variation retained by markers and polygenic effects assumed together and the normal prior assumed to markers effects, that deals better with the collinearity between markers. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this paper we investigate the quantum phase transition from magnetic Bose Glass to magnetic Bose-Einstein condensation induced by amagnetic field in NiCl2 center dot 4SC(NH2)(2) (dichloro-tetrakis-thiourea-nickel, or DTN), doped with Br (Br-DTN) or site diluted. Quantum Monte Carlo simulations for the quantum phase transition of the model Hamiltonian for Br-DTN, as well as for site-diluted DTN, are consistent with conventional scaling at the quantum critical point and with a critical exponent z verifying the prediction z = d; moreover the correlation length exponent is found to be nu = 0.75(10), and the order parameter exponent to be beta = 0.95(10). We investigate the low-temperature thermodynamics at the quantum critical field of Br-DTN both numerically and experimentally, and extract the power-law behavior of the magnetization and of the specific heat. Our results for the exponents of the power laws, as well as previous results for the scaling of the critical temperature to magnetic ordering with the applied field, are incompatible with the conventional crossover-scaling Ansatz proposed by Fisher et al. [Phys. Rev. B 40, 546 (1989)]. However they can all be reconciled within a phenomenological Ansatz in the presence of a dangerously irrelevant operator.
Resumo:
We address the problem of selecting the best linear unbiased predictor (BLUP) of the latent value (e.g., serum glucose fasting level) of sample subjects with heteroskedastic measurement errors. Using a simple example, we compare the usual mixed model BLUP to a similar predictor based on a mixed model framed in a finite population (FPMM) setup with two sources of variability, the first of which corresponds to simple random sampling and the second, to heteroskedastic measurement errors. Under this last approach, we show that when measurement errors are subject-specific, the BLUP shrinkage constants are based on a pooled measurement error variance as opposed to the individual ones generally considered for the usual mixed model BLUP. In contrast, when the heteroskedastic measurement errors are measurement condition-specific, the FPMM BLUP involves different shrinkage constants. We also show that in this setup, when measurement errors are subject-specific, the usual mixed model predictor is biased but has a smaller mean squared error than the FPMM BLUP which points to some difficulties in the interpretation of such predictors. (C) 2011 Elsevier By. All rights reserved.
Resumo:
We propose a stage-structured integrodifference model for blowflies' growth and dispersion taking into account the density dependence of fertility and survival rates and the non-overlap of generations. We assume a discrete-time, stage-structured, model. The spatial dynamics is introduced by means of a redistribution kernel. We treat one and two dimensional cases, the latter on the semi-plane, with a reflexive boundary. We analytically show that the upper bound for the invasion front speed is the same as in the one-dimensional case. Using laboratory data for fertility and survival parameters and dispersal data of a single generation from a capture-recapture experiment in South Africa, we obtain an estimate for the velocity of invasion of blowflies of the species Chrysomya albiceps. This model predicts a speed of invasion which was compared to actual observational data for the invasion of the focal species in the Neotropics. Good agreement was found between model and observations.
Resumo:
Background: Tuberculosis (TB) remains a public health issue worldwide. The lack of specific clinical symptoms to diagnose TB makes the correct decision to admit patients to respiratory isolation a difficult task for the clinician. Isolation of patients without the disease is common and increases health costs. Decision models for the diagnosis of TB in patients attending hospitals can increase the quality of care and decrease costs, without the risk of hospital transmission. We present a predictive model for predicting pulmonary TB in hospitalized patients in a high prevalence area in order to contribute to a more rational use of isolation rooms without increasing the risk of transmission. Methods: Cross sectional study of patients admitted to CFFH from March 2003 to December 2004. A classification and regression tree (CART) model was generated and validated. The area under the ROC curve (AUC), sensitivity, specificity, positive and negative predictive values were used to evaluate the performance of model. Validation of the model was performed with a different sample of patients admitted to the same hospital from January to December 2005. Results: We studied 290 patients admitted with clinical suspicion of TB. Diagnosis was confirmed in 26.5% of them. Pulmonary TB was present in 83.7% of the patients with TB (62.3% with positive sputum smear) and HIV/AIDS was present in 56.9% of patients. The validated CART model showed sensitivity, specificity, positive predictive value and negative predictive value of 60.00%, 76.16%, 33.33%, and 90.55%, respectively. The AUC was 79.70%. Conclusions: The CART model developed for these hospitalized patients with clinical suspicion of TB had fair to good predictive performance for pulmonary TB. The most important variable for prediction of TB diagnosis was chest radiograph results. Prospective validation is still necessary, but our model offer an alternative for decision making in whether to isolate patients with clinical suspicion of TB in tertiary health facilities in countries with limited resources.
Resumo:
This paper addressed the problem of water-demand forecasting for real-time operation of water supply systems. The present study was conducted to identify the best fit model using hourly consumption data from the water supply system of Araraquara, Sa approximate to o Paulo, Brazil. Artificial neural networks (ANNs) were used in view of their enhanced capability to match or even improve on the regression model forecasts. The ANNs used were the multilayer perceptron with the back-propagation algorithm (MLP-BP), the dynamic neural network (DAN2), and two hybrid ANNs. The hybrid models used the error produced by the Fourier series forecasting as input to the MLP-BP and DAN2, called ANN-H and DAN2-H, respectively. The tested inputs for the neural network were selected literature and correlation analysis. The results from the hybrid models were promising, DAN2 performing better than the tested MLP-BP models. DAN2-H, identified as the best model, produced a mean absolute error (MAE) of 3.3 L/s and 2.8 L/s for training and test set, respectively, for the prediction of the next hour, which represented about 12% of the average consumption. The best forecasting model for the next 24 hours was again DAN2-H, which outperformed other compared models, and produced a MAE of 3.1 L/s and 3.0 L/s for training and test set respectively, which represented about 12% of average consumption. DOI: 10.1061/(ASCE)WR.1943-5452.0000177. (C) 2012 American Society of Civil Engineers.
Resumo:
The objective of this work is to predict the temperature distribution of partially submersed umbilical cables under different operating and environmental conditions. The commercial code Fluent (R) was used to simulate the heat transfer and the air fluid flow of part of a vertical umbilical cable near the air-water interface. A free-convective three-dimensional turbulent flow in open-ended vertical annuli was solved. The influence of parameters such as the heat dissipating rate, wind velocity, air temperature and solar radiation was analyzed. The influence of the presence of a radiation shield consisting of a partially submersed cylindrical steel tube was also considered. The air flow and the buoyancy-driven convective heat transfer in the annular region between the steel tube and the umbilical cable were calculated using the standard k-epsilon turbulence model. The radiative heat transfer between the umbilical external surface and the radiation shield was calculated using the Discrete Ordinates model. The results indicate that the influence of a hot environment and intense solar radiation may affect the umbilical cable performance in its dry portion.
Resumo:
The ATLAS and CMS collaborations have recently shown data suggesting the presence of a Higgs boson in the vicinity of 125 GeV. We show that a two-Higgs-doublet model spectrum, with the pseudoscalar state being the lightest, could be responsible for the diphoton signal events. In this model, the other scalars are considerably heavier and are not excluded by the current LHC data. If this assumption is correct, future LHC data should show a strengthening of the gamma gamma signal, while the signals in the ZZ(()*()) -> 4l and WW(*()) -> 2l2 nu channels should diminish and eventually disappear, due to the absence of diboson tree-level couplings of the CP-odd state. The heavier CP-even neutral scalars can now decay into channels involving the CP-odd light scalar which, together with their larger masses, allow them to avoid the existing bounds on Higgs searches. We suggest additional signals to confirm this scenario at the LHC, in the decay channels of the heavier scalars into AA and AZ. Finally, this inverted two-Higgs-doublet spectrum is characteristic in models where fermion condensation leads to electroweak symmetry breaking. We show that in these theories it is possible to obtain the observed diphoton signal at or somewhat above the prediction for the standard model Higgs for the typical values of the parameters predicted.
Resumo:
Introduction: Computerizd tomography (CT) is the gold standard for the evaluation of intra- (IAF) and total (TAF) abdominal fat; however, the high cost of the procedure and exposure to radiation limit its routine use. Objective: To develop equations that utilize anthropometric measures for the estimate of IAF and TAF in obese women with polycystic ovary syndrome (PCOS). Methods: The weight, height, BMI, and abdominal (AC), waist (WC), chest (CC), and neck (NC) circumferences of thirty obese women with PCOS were measured, and their IAF and TAF were analyzed by CT. Results: The anthropometric variables AC, CC, and NC were chosen for the TAF linear regression model because they were better correlated with the fat deposited in this region. The model proposed for TAF (predicted) was: 4.63725 + 0.01483 x AC - 0.00117 x NC - 0.00177 x CC (R-2 = 0.78); and the model proposed for IAF was: IAF (predicted) = 1.88541 + 0.01878 x WC + 0.05687 x NC - 0.01529 x CC (R-2 = 0.51). AC was the only independent predictor of TAF (p < 0.01). Conclusion: The equations proposed showed good correlation with the real value measured by CT, and can be used in clinical practice. (Nutr Hosp. 2012;27:1662-1666) DOI:10.3305/nh.2012.27.5.5933
Resumo:
Objectives: To integrate data from two-dimensional echocardiography (2D ECHO), three-dimensional echocardiography (3D ECHO), and tissue Doppler imaging (TDI) for prediction of left ventricular (LV) reverse remodeling (LVRR) after cardiac resynchronization therapy (CRT). It was also compared the evaluation of cardiac dyssynchrony by TDI and 3D ECHO. Methods: Twenty-four consecutive patients with heart failure, sinus rhythm, QRS = 120 msec, functional class III or IV and LV ejection fraction (LVEF) = 0.35 underwent CRT. 2D ECHO, 3D ECHO with systolic dyssynchrony index (SDI) analysis, and TDI were performed before, 3 and 6 months after CRT. Cardiac dyssynchrony analyses by TDI and SDI were compared with the Pearson's correlation test. Before CRT, a univariate analysis of baseline characteristics was performed for the construction of a logistic regression model to identify the best predictors of LVRR. Results: After 3 months of CRT, there was a moderate correlation between TDI and SDI (r = 0.52). At other time points, there was no strong correlation. Nine of twenty-four (38%) patients presented with LVRR 6 months after CRT. After logistic regression analysis, SDI (SDI > 11%) was the only independent factor in the prediction of LVRR 6 months of CRT (sensitivity = 0.89 and specificity = 0.73). After construction of receiver operator characteristic (ROC) curves, an equation was established to predict LVRR: LVRR =-0.4LVDD (mm) + 0.5LVEF (%) + 1.1SDI (%), with responders presenting values >0 (sensitivity = 0.67 and specificity = 0.87). Conclusions: In this study, there was no strong correlation between TDI and SDI. An equation is proposed for the prediction of LVRR after CRT. Although larger trials are needed to validate these findings, this equation may be useful to candidates for CRT. (Echocardiography 2012;29:678-687)