910 resultados para Power Systems Stabilization


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Solid state engineered materials have proven to be useful and suitable tools in the quest of new materials. In this thesis different crystalline compounds were synthesized to provide more sustainable products for different applications, as in cosmetics or in agrochemistry, to propose pollutants removal strategy or to obtain materials for electrocatalysis. Therefore, the research projects presented here can be divided into three main topics: (i) sustainable preparation of solid materials of widely used active ingredients aimed at the reduction of their occurrence in the natural environment. The systems studied in this section are cyclodextrins host-guest compounds, obtained via mechanochemical and slurry synthesis. The first chemicals studied are sunscreens inclusion complexes, that proved to have enhanced photostability and desired photoprotection. The same synthetic methods were applied to obtain inclusion complexes of bentazon, a herbicide often found to leach in groundwaters. The resulting products showed to have desired water solubility properties. The same herbicide was also adsorbed on amorphous calcium phosphate nanoparticles, to obtain a biocompatible formulation of this agrochemical. This herbicide could benefit by the adsorption on nanoparticles for what concerns its kinetic release in different media as well as its photostability. (ii) Sustainable synthesis of co-crystals based on polycyclic aromatic hydrocarbons, for the proposal of a sequestering method with a resulting material with enhanced properties. The co-crystallization via mechanochemical means proved that these pollutants can be sequestered via simple solvent-free synthesis and the obtained materials present better photochemical properties when compared to the starting co-formers. (iii) Crystallization from mild solvents of nanosized materials useful for the application in electrocatalysis. The study of compounds based on nickel and cobalt metal ions resulted in the obtainment of 2D and 1D coordination polymers. Moreover, solid solutions were obtained. These crystals showed layered structures and, according to preliminary results, they can be exfoliated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Combined Cooling Heat and Power Generation (CCHP) or trigeneration has been considered worldwide as a suitable alternative to traditional energy systems in terms of significant energy saving and environmental conservation. The development and evaluation of a solar driven micro-CCHP system based on a ORC cogenerator and an Adsorption Chiller (AC) experimental prototypes has been the focus of this PhD research. The specific objectives of the overall project are: • To design, construct and evaluate an innovative Adsorption Chiller in order to improve the performances of the AC technology. • To thermodynamically model the proposed micro-scale solar driven CHP system and to prove that the concept of trigeneration through solar energy combined with an organic Rankine turbine cycle (ORC) and an adsorption chiller (AC) is suitable for residential applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An essential role in the global energy transition is attributed to Electric Vehicles (EVs) the energy for EV traction can be generated by renewable energy sources (RES), also at a local level through distributed power plants, such as photovoltaic (PV) systems. However, EV integration with electrical systems might not be straightforward. The intermittent RES, combined with the high and uncontrolled aggregate EV charging, require an evolution toward new planning and paradigms of energy systems. In this context, this work aims to provide a practical solution for EV charging integration in electrical systems with RES. A method for predicting the power required by an EV fleet at the charging hub (CH) is developed in this thesis. The proposed forecasting method considers the main parameters on which charging demand depends. The results of the EV charging forecasting method are deeply analyzed under different scenarios. To reduce the EV load intermittency, methods for managing the charging power of EVs are proposed. The main target was to provide Charging Management Systems (CMS) that modulate EV charging to optimize specific performance indicators such as system self-consumption, peak load reduction, and PV exploitation. Controlling the EV charging power to achieve specific optimization goals is also known as Smart Charging (SC). The proposed techniques are applied to real-world scenarios demonstrating performance improvements in using SC strategies. A viable alternative to maximize integration with intermittent RES generation is the integration of energy storage. Battery Energy Storage Systems (BESS) may be a buffer between peak load and RES production. A sizing algorithm for PV+BESS integration in EV charging hubs is provided. The sizing optimization aims to optimize the system's energy and economic performance. The results provide an overview of the optimal size that the PV+BESS plant should have to improve whole system performance in different scenarios.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the frame of inductive power transfer (IPT) systems, arrays of magnetically coupled resonators have received increasing attention as they are cheap and versatile due to their simple structure. They consist of magnetically coupled coils, which resonate with their self-capacitance or lumped capacitive networks. Of great industrial interest are planar resonator arrays used to power a receiver that can be placed at any position above the array. A thorough circuit analysis has been carried out, first starting from traditional two-coil IPT devices. Then, resonator arrays have been introduced, with particular attention to the case of arrays with a receiver. To evaluate the system performance, a circuit model based on original analytical formulas has been developed and experimentally validated. The results of the analysis also led to the definition of a new doubly-fed array configuration with a receiver that can be placed above it at any position. A suitable control strategy aimed at maximising the transmitted power and the efficiency has been also proposed. The study of the array currents has been carried out resorting to the theory of magneto-inductive waves, allowing useful insight to be highlighted. The analysis has been completed with a numerical and experimental study on the magnetic field distribution originating from the array. Furthermore, an application of the resonator array as a position sensor has been investigated. The position of the receiver is estimated through the measurement of the array input impedance, for which an original analytical expression has been also obtained. The application of this sensing technique in an automotive dynamic IPT system has been discussed. The thesis concludes with an evaluation of the possible applications of two-dimensional resonator arrays in IPT systems. These devices can be used to improve system efficiency and transmitted power, as well as for magnetic field shielding.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the major issues for power converters that are connected to the electric grid are the measurement of three phase Conduced Emissions (CE), which are regulated by international and regional standards. CE are composed of two components which are Common Mode (CM) noise and Differential Mode (DM) noise. To achieve compliance with these regulations the Equipment Under Test (EUT) includes filtering and other electromagnetic emission control strategies. The separation of differential mode and common mode noise in Electromagnetic Interference (EMI) analysis is a well-known procedure which is useful especially for the optimization of the EMI filter, to improve the CM or DM attenuation depending on which component of the conducted emissions is predominant, and for the analysis and the understanding of interference phenomena of switched mode power converters. However, separating both components is rarely done during measurements. Therefore, in this thesis an active device for the separation of the CM and DM EMI noise in three phase power electronic systems has been designed and experimentally analysed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study assessed the effects of haptic information on the postural control systems of individuals with intellectual disabilities (ID), through the use of a nonrigid tool that we call the ""anchor system"" (e.g., ropes attached to graduated weights that rest on the floor). Eleven participants with ID were asked to stand, blindfolded, on a balance beam placed at two heights (10 and 20 cm), for 30 s, while using the anchor system at two weights. The lighter anchor weight appeared to improve the individuals' balance in contrast to a control task condition; therefore, we concluded that haptic sensitivity was more significant in helping to orient the body than was the anchor's mechanical support alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the concept of piezoaeroelasticity for energy harvesting. The focus is placed on mathematical modeling and experimental validations of the problem of generating electricity at the flutter boundary of a piezoaeroelastic airfoil. An electrical power output of 10.7 mW is delivered to a 100 k load at the linear flutter speed of 9.30 m/s (which is 5.1% larger than the short-circuit flutter speed). The effect of piezoelectric power generation on the linear flutter speed is also discussed and a useful consequence of having nonlinearities in the system is addressed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3427405]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. It was proposed earlier that the relativistic ejections observed in microquasars could be produced by violent magnetic reconnection episodes at the inner disk coronal region (de Gouveia Dal Pino & Lazarian 2005). Aims. Here we revisit this model, which employs a standard accretion disk description and fast magnetic reconnection theory, and discuss the role of magnetic reconnection and associated heating and particle acceleration in different jet/disk accretion systems, namely young stellar objects (YSOs), microquasars, and active galactic nuclei (AGNs). Methods. In microquasars and AGNs, violent reconnection episodes between the magnetic field lines of the inner disk region and those that are anchored in the black hole are able to heat the coronal/disk gas and accelerate the plasma to relativistic velocities through a diffusive first-order Fermi-like process within the reconnection site that will produce intermittent relativistic ejections or plasmons. Results. The resulting power-law electron distribution is compatible with the synchrotron radio spectrum observed during the outbursts of these sources. A diagram of the magnetic energy rate released by violent reconnection as a function of the black hole (BH) mass spanning 10(9) orders of magnitude shows that the magnetic reconnection power is more than sufficient to explain the observed radio luminosities of the outbursts from microquasars to low luminous AGNs. In addition, the magnetic reconnection events cause the heating of the coronal gas, which can be conducted back to the disk to enhance its thermal soft X-ray emission as observed during outbursts in microquasars. The decay of the hard X-ray emission right after a radio flare could also be explained in this model due to the escape of relativistic electrons with the evolving jet outburst. In the case of YSOs a similar magnetic configuration can be reached that could possibly produce observed X-ray flares in some sources and provide the heating at the jet launching base, but only if violent magnetic reconnection events occur with episodic, very short-duration accretion rates which are similar to 100-1000 times larger than the typical average accretion rates expected for more evolved (T Tauri) YSOs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the irreversibility and the entropy production in nonequilibrium interacting particle systems described by a Fokker-Planck equation by the use of a suitable master equation representation. The irreversible character is provided either by nonconservative forces or by the contact with heat baths at distinct temperatures. The expression for the entropy production is deduced from a general definition, which is related to the probability of a trajectory in phase space and its time reversal, that makes no reference a priori to the dissipated power. Our formalism is applied to calculate the heat conductance in a simple system consisting of two Brownian particles each one in contact to a heat reservoir. We show also the connection between the definition of entropy production rate and the Jarzynski equality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show a function that fits well the probability density of return times between two consecutive visits of a chaotic trajectory to finite size regions in phase space. It deviates from the exponential statistics by a small power-law term, a term that represents the deterministic manifestation of the dynamics. We also show how one can quickly and easily estimate the Kolmogorov-Sinai entropy and the short-term correlation function by realizing observations of high probable returns. Our analyses are performed numerically in the Henon map and experimentally in a Chua's circuit. Finally, we discuss how our approach can be used to treat the data coming from experimental complex systems and for technological applications. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3263943]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the observation of microwave-induced resistance oscillations associated with the fractional ratio n/m of the microwave irradiation frequency to the cyclotron frequency for m up to 8 in a two-dimensional electron system with high electron density. The features are quenched at high microwave frequencies independent of the fractional order m. We analyze temperature, power, and frequency dependencies of the magnetoresistance oscillations and discuss them in connection with existing theories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of microwave irradiation on dissipative and Hall resistance in high-quality bilayer electron systems is investigated experimentally. We observe a deviation from odd symmetry under magnetic-field reversal in the microwave-induced Hall resistance boolean AND R(xy), whereas the dissipative resistance boolean AND R(xx) obeys even symmetry. Studies of Delta R(xy) as a function of the microwave electric field and polarization exhibit a strong and nontrivial power and polarization dependence. The obtained results are discussed in connection to existing theoretical models of microwave-induced photoconductivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The behavior of stability regions of nonlinear autonomous dynamical systems subjected to parameter variation is studied in this paper. In particular, the behavior of stability regions and stability boundaries when the system undergoes a type-zero sadle-node bifurcation on the stability boundary is investigated in this paper. It is shown that the stability regions suffer drastic changes with parameter variation if type-zero saddle-node bifurcations occur on the stability boundary. A complete characterization of these changes in the neighborhood of a type-zero saddle-node bifurcation value is presented in this paper. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, artificial neural networks are employed in a novel approach to identify harmonic components of single-phase nonlinear load currents, whose amplitude and phase angle are subject to unpredictable changes, even in steady-state. The first six harmonic current components are identified through the variation analysis of waveform characteristics. The effectiveness of this method is tested by applying it to the model of a single-phase active power filter, dedicated to the selective compensation of harmonic current drained by an AC controller. Simulation and experimental results are presented to validate the proposed approach. (C) 2010 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two different fuzzy approaches to voltage control in electric power distribution systems are introduced in this paper. The real-time controller in each case would act on power transformers equipped with under-load tap changers. Learning systems are employed to turn the voltage-control relays into adaptive devices. The scope of this study has been limited to the power distribution substation, and the voltage measurements and control actions are carried out on the secondary bus. The capacity of fuzzy systems to handle approximate data, together with their unique ability to interpret qualitative information, make it possible to design voltage-control strategies that satisfy the requirements of the Brazilian regulatory bodies and the real concerns of the electric power distribution companies. Fuzzy control systems based on these two strategies have been implemented and the test results were highly satisfactory.