849 resultados para Potential methods


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Diets with a high postprandial glycemic response may contribute to long-term development of insulin resistance and diabetes, however previous epidemiological studies are conflicting on whether glycemic index (GI) or glycemic load (GL) are dietary factors associated with the progression. Our objectives were to estimate GI and GL in a group of older women, and evaluate cross-sectional associations with insulin resistance. Subjects and Methods: Subjects were 329 Australian women aged 42-81 years participating in year three of the Longitudinal Assessment of Ageing in Women (LAW). Dietary intakes were assessed by diet history interviews and analysed using a customised GI database. Insulin resistance was defined as a homeostasis model assessment (HOMA) value of >3.99, based on fasting blood glucose and insulin concentrations. Results: GL was significantly higher in the 26 subjects who were classified as insulin resistant compared to subjects who were not (134±33 versus 114±24, P<0.001). In a logistic regression model, an increment of 15 GL units increased the odds of insulin resistance by 2.09 (95%CI 1.55, 2.80, P<0.001) independently of potential confounding variables. No significant associations were found when insulin resistance was assessed as a continuous variable. Conclusions: Results of this cross-sectional study support the concept that diets with a higher GL are associated with increased risk of insulin resistance. Further studies are required to investigate whether reducing glycemic intake, by either consuming lower GI foods and/or smaller serves of carbohydrate, can contribute to a reduction in development of insulin resistance and long-term risk of type 2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inquiry documented in this thesis is located at the nexus of technological innovation and traditional schooling. As we enter the second decade of a new century, few would argue against the increasingly urgent need to integrate digital literacies with traditional academic knowledge. Yet, despite substantial investments from governments and businesses, the adoption and diffusion of contemporary digital tools in formal schooling remain sluggish. To date, research on technology adoption in schools tends to take a deficit perspective of schools and teachers, with the lack of resources and teacher ‘technophobia’ most commonly cited as barriers to digital uptake. Corresponding interventions that focus on increasing funding and upskilling teachers, however, have made little difference to adoption trends in the last decade. Empirical evidence that explicates the cultural and pedagogical complexities of innovation diffusion within long-established conventions of mainstream schooling, particularly from the standpoint of students, is wanting. To address this knowledge gap, this thesis inquires into how students evaluate and account for the constraints and affordances of contemporary digital tools when they engage with them as part of their conventional schooling. It documents the attempted integration of a student-led Web 2.0 learning initiative, known as the Student Media Centre (SMC), into the schooling practices of a long-established, high-performing independent senior boys’ school in urban Australia. The study employed an ‘explanatory’ two-phase research design (Creswell, 2003) that combined complementary quantitative and qualitative methods to achieve both breadth of measurement and richness of characterisation. In the initial quantitative phase, a self-reported questionnaire was administered to the senior school student population to determine adoption trends and predictors of SMC usage (N=481). Measurement constructs included individual learning dispositions (learning and performance goals, cognitive playfulness and personal innovativeness), as well as social and technological variables (peer support, perceived usefulness and ease of use). Incremental predictive models of SMC usage were conducted using Classification and Regression Tree (CART) modelling: (i) individual-level predictors, (ii) individual and social predictors, and (iii) individual, social and technological predictors. Peer support emerged as the best predictor of SMC usage. Other salient predictors include perceived ease of use and usefulness, cognitive playfulness and learning goals. On the whole, an overwhelming proportion of students reported low usage levels, low perceived usefulness and a lack of peer support for engaging with the digital learning initiative. The small minority of frequent users reported having high levels of peer support and robust learning goal orientations, rather than being predominantly driven by performance goals. These findings indicate that tensions around social validation, digital learning and academic performance pressures influence students’ engagement with the Web 2.0 learning initiative. The qualitative phase that followed provided insights into these tensions by shifting the analytics from individual attitudes and behaviours to shared social and cultural reasoning practices that explain students’ engagement with the innovation. Six indepth focus groups, comprising 60 students with different levels of SMC usage, were conducted, audio-recorded and transcribed. Textual data were analysed using Membership Categorisation Analysis. Students’ accounts converged around a key proposition. The Web 2.0 learning initiative was useful-in-principle but useless-in-practice. While students endorsed the usefulness of the SMC for enhancing multimodal engagement, extending peer-topeer networks and acquiring real-world skills, they also called attention to a number of constraints that obfuscated the realisation of these design affordances in practice. These constraints were cast in terms of three binary formulations of social and cultural imperatives at play within the school: (i) ‘cool/uncool’, (ii) ‘dominant staff/compliant student’, and (iii) ‘digital learning/academic performance’. The first formulation foregrounds the social stigma of the SMC among peers and its resultant lack of positive network benefits. The second relates to students’ perception of the school culture as authoritarian and punitive with adverse effects on the very student agency required to drive the innovation. The third points to academic performance pressures in a crowded curriculum with tight timelines. Taken together, findings from both phases of the study provide the following key insights. First, students endorsed the learning affordances of contemporary digital tools such as the SMC for enhancing their current schooling practices. For the majority of students, however, these learning affordances were overshadowed by the performative demands of schooling, both social and academic. The student participants saw engagement with the SMC in-school as distinct from, even oppositional to, the conventional social and academic performance indicators of schooling, namely (i) being ‘cool’ (or at least ‘not uncool’), (ii) sufficiently ‘compliant’, and (iii) achieving good academic grades. Their reasoned response therefore, was simply to resist engagement with the digital learning innovation. Second, a small minority of students seemed dispositionally inclined to negotiate the learning affordances and performance constraints of digital learning and traditional schooling more effectively than others. These students were able to engage more frequently and meaningfully with the SMC in school. Their ability to adapt and traverse seemingly incommensurate social and institutional identities and norms is theorised as cultural agility – a dispositional construct that comprises personal innovativeness, cognitive playfulness and learning goals orientation. The logic then is ‘both and’ rather than ‘either or’ for these individuals with a capacity to accommodate both learning and performance in school, whether in terms of digital engagement and academic excellence, or successful brokerage across multiple social identities and institutional affiliations within the school. In sum, this study takes us beyond the familiar terrain of deficit discourses that tend to blame institutional conservatism, lack of resourcing and teacher resistance for low uptake of digital technologies in schools. It does so by providing an empirical base for the development of a ‘third way’ of theorising technological and pedagogical innovation in schools, one which is more informed by students as critical stakeholders and thus more relevant to the lived culture within the school, and its complex relationship to students’ lives outside of school. It is in this relationship that we find an explanation for how these individuals can, at the one time, be digital kids and analogue students.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human hair is a relatively inert biopolymer and can survive through natural disasters. It is also found as trace evidence at crime scenes. Previous studies by FTIRMicrospectroscopy and – Attenuated Total Reflectance (ATR) successfully showed that hairs can be matched and discriminated on the basis of gender, race and hair treatment, when interpreted by chemometrics. However, these spectroscopic techniques are difficult to operate at- or on-field. On the other hand, some near infrared spectroscopic (NIRS) instruments equipped with an optical probe, are portable and thus, facilitate the on- or at –field measurements for potential application directly at a crime or disaster scene. This thesis is focused on bulk hair samples, which are free of their roots, and thus, independent of potential DNA contribution for identification. It explores the building of a profile of an individual with the use of the NIRS technique on the basis of information on gender, race and treated hair, i.e. variables which can match and discriminate individuals. The complex spectra collected may be compared and interpreted with the use of chemometrics. These methods can then be used as protocol for further investigations. Water is a common substance present at forensic scenes e.g. at home in a bath, in the swimming pool; it is also common outdoors in the sea, river, dam, puddles and especially during DVI incidents at the seashore after a tsunami. For this reason, the matching and discrimination of bulk hair samples after the water immersion treatment was also explored. Through this research, it was found that Near Infrared Spectroscopy, with the use of an optical probe, has successfully matched and discriminated bulk hair samples to build a profile for the possible application to a crime or disaster scene. Through the interpretation of Chemometrics, such characteristics included Gender and Race. A novel approach was to measure the spectra not only in the usual NIR range (4000 – 7500 cm-1) but also in the Visible NIR (7500 – 12800 cm-1). This proved to be particularly useful in exploring the discrimination of differently coloured hair, e.g. naturally coloured, bleached or dyed. The NIR region is sensitive to molecular vibrations of the hair fibre structure as well as that of the dyes and damage from bleaching. But the Visible NIR region preferentially responds to the natural colourants, the melanin, which involves electronic transitions. This approach was shown to provide improved discrimination between dyed and untreated hair. This thesis is an extensive study of the application of NIRS with the aid of chemometrics, for matching and discrimination of bulk human scalp hair. The work not only indicates the strong potential of this technique in this field but also breaks new ground with the exploration of the use of the NIR and Visible NIR ranges for spectral sampling. It also develops methods for measuring spectra from hair which has been immersed in different water media (sea, river and dam)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The value of soil evidence in the forensic discipline is well known. However, it would be advantageous if an in-situ method was available that could record responses from tyre or shoe impressions in ground soil at the crime scene. The development of optical fibres and emerging portable NIR instruments has unveiled a potential methodology which could permit such a proposal. The NIR spectral region contains rich chemical information in the form of overtone and combination bands of the fundamental infrared absorptions and low-energy electronic transitions. This region has in the past, been perceived as being too complex for interpretation and consequently was scarcely utilized. The application of NIR in the forensic discipline is virtually non-existent creating a vacancy for research in this area. NIR spectroscopy has great potential in the forensic discipline as it is simple, nondestructive and capable of rapidly providing information relating to chemical composition. The objective of this study is to investigate the ability of NIR spectroscopy combined with Chemometrics to discriminate between individual soils. A further objective is to apply the NIR process to a simulated forensic scenario where soil transfer occurs. NIR spectra were recorded from twenty-seven soils sampled from the Logan region in South-East Queensland, Australia. A series of three high quartz soils were mixed with three different kaolinites in varying ratios and NIR spectra collected. Spectra were also collected from six soils as the temperature of the soils was ramped from room temperature up to 6000C. Finally, a forensic scenario was simulated where the transferral of ground soil to shoe soles was investigated. Chemometrics methods such as the commonly known Principal Component Analysis (PCA), the less well known fuzzy clustering (FC) and ranking by means of multicriteria decision making (MCDM) methodology were employed to interpret the spectral results. All soils were characterised using Inductively Coupled Plasma Optical Emission Spectroscopy and X-Ray Diffractometry. Results were promising revealing NIR combined with Chemometrics is capable of discriminating between the various soils. Peak assignments were established by comparing the spectra of known minerals with the spectra collected from the soil samples. The temperature dependent NIR analysis confirmed the assignments of the absorptions due to adsorbed and molecular bound water. The relative intensities of the identified NIR absorptions reflected the quantitative XRD and ICP characterisation results. PCA and FC analysis of the raw soils in the initial NIR investigation revealed that the soils were primarily distinguished on the basis of their relative quartz and kaolinte contents, and to a lesser extent on the horizon from which they originated. Furthermore, PCA could distinguish between the three kaolinites used in the study, suggesting that the NIR spectral region was sensitive enough to contain information describing variation within kaolinite itself. The forensic scenario simulation PCA successfully discriminated between the ‘Backyard Soil’ and ‘Melcann® Sand’, as well as the two sampling methods employed. Further PCA exploration revealed that it was possible to distinguish between the various shoes used in the simulation. In addition, it was possible to establish association between specific sampling sites on the shoe with the corresponding site remaining in the impression. The forensic application revealed some limitations of the process relating to moisture content and homogeneity of the soil. These limitations can both be overcome by simple sampling practices and maintaining the original integrity of the soil. The results from the forensic scenario simulation proved that the concept shows great promise in the forensic discipline.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous expert elicitation methods have been suggested for generalised linear models (GLMs). This paper compares three relatively new approaches to eliciting expert knowledge in a form suitable for Bayesian logistic regression. These methods were trialled on two experts in order to model the habitat suitability of the threatened Australian brush-tailed rock-wallaby (Petrogale penicillata). The first elicitation approach is a geographically assisted indirect predictive method with a geographic information system (GIS) interface. The second approach is a predictive indirect method which uses an interactive graphical tool. The third method uses a questionnaire to elicit expert knowledge directly about the impact of a habitat variable on the response. Two variables (slope and aspect) are used to examine prior and posterior distributions of the three methods. The results indicate that there are some similarities and dissimilarities between the expert informed priors of the two experts formulated from the different approaches. The choice of elicitation method depends on the statistical knowledge of the expert, their mapping skills, time constraints, accessibility to experts and funding available. This trial reveals that expert knowledge can be important when modelling rare event data, such as threatened species, because experts can provide additional information that may not be represented in the dataset. However care must be taken with the way in which this information is elicited and formulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction The purpose of this study was to develop, implement and evaluate the impact of an educational intervention, comprising an innovative model of clinical decisionmaking and educational delivery strategy for facilitating nursing students‘ learning and development of competence in paediatric physical assessment practices. Background of the study Nursing students have an undergraduate education that aims to produce graduates of a generalist nature who demonstrate entry level competence for providing nursing care in a variety of health settings. Consistent with population morbidity and health care roles, paediatric nursing concepts typically form a comparatively small part of undergraduate curricula and students‘ exposure to paediatric physical assessment concepts and principles are brief. However, the nursing shortage has changed traditional nursing employment patterns and new graduates form the majority of the recruitment pool for paediatric nursing speciality staff. Paediatric nursing is a popular career choice for graduates and anecdotal evidence suggests that nursing students who select a clinical placement in their final year intend to seek employment in paediatrics upon graduation. Although concepts of paediatric nursing are included within undergraduate curriculum, students‘ ability to develop the required habits of mind to practice in what is still regarded as a speciality area of practice is somewhat limited. One of the areas of practice where this particularly impacts is in paediatric nursing physical assessment. Physical assessment is a fundamental component of nursing practice and competence in this area of practice is central to nursing students‘ development of clinical capability for practice as a registered nurse. Timely recognition of physiologic deterioration of patients is a key outcome of nurses‘ competent use of physical assessment strategies, regardless of the practice context. In paediatric nursing contexts children‘s physical assessment practices must specifically accommodate the child‘s different physiological composition, function and pattern of clinical deterioration (Hockenberry & Barrera, 2007). Thus, to effectively manage physical assessment of patients within the paediatric practice setting nursing students need to integrate paediatric nursing theory into their practice. This requires significant information processing and it is in this process where students are frequently challenged. The provision of rules or models can guide practice and assist novice-level nurses to develop their capabilities (Benner, 1984; Benner, Hooper-Kyriakidis & Stannard, 1999). Nursing practice models are cognitive tools that represent simplified patterns of expert analysis employing concepts that suit the limited reasoning of the inexperienced, and can represent the =rules‘ referred to by Benner (1984). Without a practice model of physical assessment students are likely to be uncertain about how to proceed with data collection, the interpretation of paediatric clinical findings and the appraisal of findings. These circumstances can result in ad hoc and unreliable nursing physical assessment that forms a poor basis for nursing decisions. The educational intervention developed as part of this study sought to resolve this problem and support nursing students‘ development of competence in paediatric physical assessment. Methods This study utilised the Context Input Process Product (CIPP) Model by Stufflebeam (2004) as the theoretical framework that underpinned the research design and evaluation methodology. Each of the four elements in the CIPP model were utilised to guide discrete stages of this study. The Context element informed design of the clinical decision-making process, the Paediatric Nursing Physical Assessment model. The Input element was utilised in appraising relevant literature, identifying an appropriate instructional methodology to facilitate learning and educational intervention delivery to undergraduate nursing students, and development of program content (the CD-ROM kit). Study One employed the Process element and used expert panel approaches to review and refine instructional methods, identifying potential barriers to obtaining an effective evaluation outcome. The Product element guided design and implementation of Study Two, which was conducted in two phases. Phase One employed a quasiexperimental between-subjects methodology to evaluate the impact of the educational intervention on nursing students‘ clinical performance and selfappraisal of practices in paediatric physical assessment. Phase Two employed a thematic analysis and explored the experiences and perspectives of a sample subgroup of nursing students who used the PNPA CD-ROM kit as preparation for paediatric clinical placement. Results Results from the Process review in Study One indicated that the prototype CDROM kit containing the PNPA model met the predetermined benchmarks for face validity and the impact evaluation instrumentation had adequate content validity in comparison with predetermined benchmarks. In the first phase of Study Two the educational intervention did not result in statistically significant differences in measures of student performance or self-appraisal of practice. However, in Phase Two qualitative commentary from students, and from the expert panel who reviewed the prototype CD-ROM kit (Study One, Phase One), strongly endorsed the quality of the intervention and its potential for supporting learning. This raises questions regarding transfer of learning and it is likely that, within this study, several factors have influenced students‘ transfer of learning from the educational intervention to the clinical practice environment, where outcomes were measured. Conclusion In summary, the educational intervention employed in this study provides insights into the potential e-learning approaches offer for delivering authentic learning experiences to undergraduate nursing students. Findings in this study raise important questions regarding possible pedagogical influences on learning outcomes, issues within the transfer of theory to practice and factors that may have influenced findings within the context of this study. This study makes a unique contribution to nursing education, specifically with respect to progressing an understanding of the challenges faced in employing instructive methods to impact upon nursing students‘ development of competence. The important contribution transfer of learning processes make to students‘ transition into the professional practice context and to their development of competence within the context of speciality practice is also highlighted. This study contributes to a greater awareness of the complexity of translating theoretical learning at undergraduate level into clinical practice, particularly within speciality contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biomechanical or biophysical principles can be applied to study biological structures in their modern or fossil form. Bone is an important tissue in paleontological studies as it is a commonly preserved element in most fossil vertebrates, and can often allow its microstructures such as lacuna and canaliculi to be studied in detail. In this context, the principles of Fluid Mechanics and Scaling Laws have been previously applied to enhance the understanding of bone microarchitecture and their implications for the evolution of hydraulic structures to transport fluid. It has been shown that the microstructure of bone has evolved to maintain efficient transport between the nutrient supply and cells, the living components of the tissue. Application of the principle of minimal expenditure of energy to this analysis shows that the path distance comprising five or six lamellar regions represents an effective limit for fluid and solute transport between the nutrient supply and cells; beyond this threshold, hydraulic resistance in the network increases and additional energy expenditure is necessary for further transportation. This suggests an optimization of the size of bone’s building blocks (such as osteon or trabecular thickness) to meet the metabolic demand concomitant to minimal expenditure of energy. This biomechanical aspect of bone microstructure is corroborated from the ratio of osteon to Haversian canal diameters and scaling constants of several mammals considered in this study. This aspect of vertebrate bone microstructure and physiology may provide a basis of understanding of the form and function relationship in both extinct and extant taxa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This book aims to provide an overview of approaches to assist researchers and practitioners to explore ways of undertaking research in the information literacy field. The first chapter provides an introductory overview of research by Dr Kirsty Williamson (author of Research Methods for Students, Academics and Professionals: Information Management and Systems) and this sets the scene for the rest of the chapters where each author explores the key aspects of a specific method and explains how it may be applied in practice. The methods covered include those representing qualitative, quantitative and mixed methods. Both a chapter on the topical evidence-based practice approach, and another critiquing it, are also included. The final chapter points the way towards potential new directions for the burgeoning field

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A common optometric problem is to specify the eye’s ocular aberrations in terms of Zernike coefficients and to reduce that specification to a prescription for the optimum sphero-cylindrical correcting lens. The typical approach is first to reconstruct wavefront phase errors from measurements of wavefront slopes obtained by a wavefront aberrometer. This paper applies a new method to this clinical problem that does not require wavefront reconstruction. Instead, we base our analysis of axial wavefront vergence as inferred directly from wavefront slopes. The result is a wavefront vergence map that is similar to the axial power maps in corneal topography and hence has a potential to be favoured by clinicians. We use our new set of orthogonal Zernike slope polynomials to systematically analyse details of the vergence map analogous to Zernike analysis of wavefront maps. The result is a vector of slope coefficients that describe fundamental aberration components. Three different methods for reducing slope coefficients to a spherocylindrical prescription in power vector forms are compared and contrasted. When the original wavefront contains only second order aberrations, the vergence map is a function of meridian only and the power vectors from all three methods are identical. The differences in the methods begin to appear as we include higher order aberrations, in which case the wavefront vergence map is more complicated. Finally, we discuss the advantages and limitations of vergence map representation of ocular aberrations.