989 resultados para Olfactory Receptor Neuron


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic bradykinin antagonist peptides/peptoids have been powerful tools for delineating the roles of kinins in both normal physiology and in pathological states. Here, we report the identification of a novel, naturally occurring bradykinin B2 receptor antagonist peptide, helokinestatin, isolated and structurally characterized from the venoms of helodermatid lizards—the Gila monster (Heloderma suspectum) and the Mexican beaded lizard (Heloderma horridum). The primary structure of the peptide was established by a combination of microsequencing and mass spectroscopy as Gly-Pro-Pro-Tyr-Gln-Pro-Leu-Val-Pro-Arg (Mr 1122.62). A synthetic replicate of helokinestatin was found to inhibit bradykinin-induced vasorelaxation of phenylephrine pre-constricted rat tail artery smooth muscle, mediated by the B2 receptor sub-type, in a dose-dependent manner. Natural selection, that generates functional optimization of predatory reptile venom peptides, can potentially provide new insights for drug lead design or for normal physiological or pathophysiological processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 67LR (67 kDa laminin receptor) is a cell-surface receptor with high affinity for its primary ligand. Its role as a laminin receptor makes it an important molecule both in cell adhesion to the basement membrane and in signalling transduction following this binding event. The protein also plays critical roles in the metastasis of tumour cells. Isolation of the protein from either normal or cancerous cells results in a product with an approx. molecular mass of 67 kDa. This protein is believed to be derived from a smaller precursor, the 37LRP (37 kDa laminin receptor precursor). However, the precise mechanism by which cytoplasmic 37LRP becomes cell-membrane-embedded 67LR is unclear. The process may involve post-translational fatty acylation of the protein combined with either homo- or hetero-dimerization, possibly with a galectin-3-epitope-containing partner. Furthermore, it has become clear that acting as a receptor for laminin is not the only function of this protein. 67LR also acts as a receptor for viruses, such as Sindbis virus and dengue virus, and is involved with internalization of the prion protein. Interestingly, unmodified 37LRP is a ribosomal component and homologues of this protein are found in all five kingdoms. In addition, it appears to be strongly associated with histones in the eukaryotic cell nucleus, although the precise role of these interactions is not clear. Here we review the current understanding of the structure and function of this molecule, as well as highlighting areas requiring further research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To prepare a nanoparticulate formulation expressing variable peripheral carboxyl density using non-endcapped and endcapped poly(lactide-co-glycolide), conjugated to antibodies recognising the siglec-7 receptor, which is expressed on most acute myeloid leukaemias. The aim is to exploit this receptor as a therapeutic target by constructing an internalising drug-loaded nanoparticle able to
translocate into cytoplasm by siglec receptor-mediated internalisation.

Materials and Methods: Antibodies to the siglec-7 (CD33-like) receptor were conjugated to dye-loaded nanoparticles using carbodiimide chemistry, giving 32.6 mg protein per mg of nanoparticles using 100% of the non-endcapped PLGA. Binding studies using cognate antigen were used to verify preservation of antibody function following conjugation.

Results: Mouse embryonic fibroblasts expressing recombinant siglec-7 receptor and exposed to NileRed-loaded nanoparticles conjugated to antibody accumulated intracellular fluorescence, which was not observed if either antibody or siglec-7 receptor was absent. Confocal microscopy revealed internalised perinuclear cytoplasmic staining, with an Acridine Orange-based analysis showing red staining in localised foci, indicating localisation within acidic endocytic compartments.

Conclusions: Results show antibody-NP constructs are internalised via siglec-7 receptor-mediated internalisation. If loaded with a therapeutic agent, antibody-NP constructs can cross into cytoplasmic
space and delivery drugs intracellularly to cells expressing CD33-like receptors, such as natural killer cells and monocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variations in the interleukin 4 receptor A (IL4RA) gene have been reported to be associated with atopy, asthma, and allergy, which may occur less frequently in subjects with type 1 diabetes (T1D). Since atopy shows a humoral immune reactivity pattern, and T1D results from a cellular (T lymphocyte) response, we hypothesised that alleles predisposing to atopy could be protective for T1D and transmitted less often than the expected 50% from heterozygous parents to offspring with T1D. We genotyped seven exonic single nucleotide polymorphisms (SNPs) and the -3223 C>T SNP in the putative promoter region of IL4RA in up to 3475 T1D families, including 1244 Finnish T1D families. Only the -3223 C>T SNP showed evidence of negative association (P=0.014). There was some evidence for an interaction between -3233 C>T and the T1D locus IDDM2 in the insulin gene region (P=0.001 in the combined and P=0.02 in the Finnish data set). We, therefore, cannot rule out a genetic effect of IL4RA in T1D, but it is not a major one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose-dependent insulinotropic polypeptide (GIP) is an important gastrointestinal hormone, which regulates insulin release and glucose homeostasis, but is rapidly inactivated by enzymatic N-terminal truncation. Here we report the enzyme resistance and biological activity of several Glu(3) -substituted analogues of GIP namely; (Ala(3))GIP, (Lys(3))GIP, (Phe(3))GIP, (Trp(3))GIP and (Tyr(3))GIP. Only (Lys(3))- GIP demonstrated moderately enhanced resistance to DPP-IV (p <0.05 to p <0.01) compared to native GIP. All analogues demonstrated a decreased potency in cAMP production (EC50 1.47 to 11.02 nM; p <0.01 to p <0.001) with (Lys(3))GIP and (Phe(3))GIP significantly inhibiting GIP-stimulated cAMP production (p <0.05). In BRIN-BD11 cells, (Lys(3))GIP, (Phe(3))GIP, (Trp(3))GIP and (Tyr(3))- GIP did not stimulate insulin secretion with both (Lys(3))GIP and (Phe(3))GIP significantly inhibiting GIP-stimulated insulin secretion (p <0.05). Injection of each GIP analogue together with glucose in oblob mice significantly increased the glycaemic excursion compared to control (p <0.05 to p <0.001). This was associated with lack of significant insulin responses. (Ala(3))GIP, (Phe(3))GIP and (Tyr(3))GIP, when administered together with GIP, significantly reduced plasma insulin (p <0.05 top <0.01) and impaired the glucose-lowering ability (p <0.05 to p <0.01) of the native peptide. The DPP-IV resistance and GIP antagonism observed were similar but less pronounced than (Pro(3))GIP. These data demonstrate that position 3 amino acid substitution of GIP with (Ala(3)), (Phe(3)), (Tyr(3)) or (Pro(3)) provides a new class of functional GIP receptor antagonists. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The two major incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are being actively explored as anti-diabetic agents because they lower blood glucose through multiple mechanisms. The rapid inactivation of GIP and GLP-1 by the ubiquitous enzyme, dipeptidyl peptidase IV (DPP IV) makes their biological actions short-lived, but stable agonists such as N-acetylated GIP (N-AcGIP) and exendin(1-39)amide have been advocated as stable and specific GIP and GLP-1 analogues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we tested the biological activity of a novel acylated form of (Pro(3))glucose-dependent insulinotropic polypetide [(Pro3)GIP] prepared by conjugating palmitic acid to Lys(16) to enhance its efficacy in vivo by promoting binding to albumin and extending its biological actions. Like the parent molecule (Pro(3))GIP, (Pro(3))GIPLys(16)PAL was completely stable to the actions of DPP-IV and significantly (p <0.01 to p <0.001) inhibited GIP-stimulated cAMP production and cellular insulin secretion. Furthermore, acute administration of (Pro(3))GIPLys(16)PAL also significantly (p <0.05 to p <0.001) countered the glucose-lowering and insulin-releasing actions of GIP in ob/ob mice. Daily injection of (Pro(3))GIPLys(16)PAL (25 nmol/kg bw) in 14-18-week-old ob/ob mice over 14 days had no effect on body weight, food intake or non-fasting plasma glucose and insulin concentrations. (Pro(3))GIPLys(16)PAL treatment also failed to significantly alter the glycaemic response to an i.p. glucose load or test meal, but insulin concentrations were significantly reduced (1.5-fold; p <0.05) after the glucose load. Insulin sensitivity was enhanced (1.3-fold; p <0.05) and pancreatic insulin was significantly reduced (p <0.05) in the (Pro(3))GIPLys(16)PAL-treated mice. These data demonstrate that acylation of Lys(16) with palmitic acid in (Pro(3))GIP does not improve its biological effectiveness as a GIP receptor antagonist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis Ablation of gastric inhibitory polypeptide ( GIP) receptor action is reported to protect against obesity and associated metabolic abnormalities. The aim of this study was to use prediabetic ob/ob mice to examine whether 60 days of chemical GIP receptor ablation with (Pro(3)) GIP is able to counter the development of genetic obesity-related diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucagonlike peptide-1(7 36)amide (GLP-1) is an incretin hormone with therapeutic potential for type 2 diabetes. Rapid removal of the Nterminal dipeptide, His7-Ala8, by the ubiquitous enzyme dipeptidyl peptidase IV (DPP IV) curtails the biological activity of GLP-1. Chemical modifications or substitutions of GLP-1 at His7 or Ala8 improve resistance to DPPIV action, but this often reduces potency. Little attention has focused on the metabolic stability and functional activity of GLP-1 analogues with amino acid substitution at Glu9, adjacent to the DPP IV cleavage site. We generated three novel Glu9-substituted GLP-1 analogues, (Pro9)GLP-1, (Phe9)GLP-1 and (Tyr9)GLP-1 and show for the first time that Glu9 of GLP-1 is important in DPP IV degradation, since replacing this amino acid, particularly with proline, substantially reduced susceptibility to degradation. All three novel GLP-1 analogues showed similar or slightly enhanced insulinotropic activity compared with native GLP-1 despite a moderate 4 10-fold reduction in receptor binding and cAMP generation. In addition, (Pro9)GLP 1 showed significant ability to moderate the plasma glucose excursion and increase circulating insulin concentrations in severely insulin resistant obese diabetic (ob/ob) mice. These observations indicate the importance of Glu9 for the biological activity of GLP-1 and susceptibility to DPP IVmediated degradation.