971 resultados para Navigation System
Resumo:
Network RTK (Real-Time Kinematic) is a technology that is based on GPS (Global Positioning System) or more generally on GNSS (Global Navigation Satellite System) observations to achieve centimeter-level accuracy positioning in real time. It is enabled by a network of Continuously Operating Reference Stations (CORS). CORS placement is an important problem in the design of network RTK as it directly affects not only the installation and running costs of the network RTK, but also the Quality of Service (QoS) provided by the network RTK. In our preliminary research on the CORS placement, we proposed a polynomial heuristic algorithm for a so-called location-based CORS placement problem. From a computational point of view, the location-based CORS placement is a largescale combinatorial optimization problem. Thus, although the heuristic algorithm is efficient in computation time it may not be able to find an optimal or near optimal solution. Aiming at improving the quality of solutions, this paper proposes a repairing genetic algorithm (RGA) for the location-based CORS placement problem. The RGA has been implemented and compared to the heuristic algorithm by experiments. Experimental results have shown that the RGA produces better quality of solutions than the heuristic algorithm.
Resumo:
Hybrid system representations have been exploited in a number of challenging modelling situations, including situations where the original nonlinear dynamics are too complex (or too imprecisely known) to be directly filtered. Unfortunately, the question of how to best design suitable hybrid system models has not yet been fully addressed, particularly in the situations involving model uncertainty. This paper proposes a novel joint state-measurement relative entropy rate based approach for design of hybrid system filters in the presence of (parameterised) model uncertainty. We also present a design approach suitable for suboptimal hybrid system filters. The benefits of our proposed approaches are illustrated through design examples and simulation studies.
Resumo:
Learning and then recognizing a route, whether travelled during the day or at night, in clear or inclement weather, and in summer or winter is a challenging task for state of the art algorithms in computer vision and robotics. In this paper, we present a new approach to visual navigation under changing conditions dubbed SeqSLAM. Instead of calculating the single location most likely given a current image, our approach calculates the best candidate matching location within every local navigation sequence. Localization is then achieved by recognizing coherent sequences of these “local best matches”. This approach removes the need for global matching performance by the vision front-end - instead it must only pick the best match within any short sequence of images. The approach is applicable over environment changes that render traditional feature-based techniques ineffective. Using two car-mounted camera datasets we demonstrate the effectiveness of the algorithm and compare it to one of the most successful feature-based SLAM algorithms, FAB-MAP. The perceptual change in the datasets is extreme; repeated traverses through environments during the day and then in the middle of the night, at times separated by months or years and in opposite seasons, and in clear weather and extremely heavy rain. While the feature-based method fails, the sequence-based algorithm is able to match trajectory segments at 100% precision with recall rates of up to 60%.
Resumo:
This paper describes system identification, estimation and control of translational motion and heading angle for a cost effective open-source quadcopter — the MikroKopter. The dynamics of its built-in sensors, roll and pitch attitude controller, and system latencies are determined and used to design a computationally inexpensive multi-rate velocity estimator that fuses data from the built-in inertial sensors and a low-rate onboard laser range finder. Control is performed using a nested loop structure that is also computationally inexpensive and incorporates different sensors. Experimental results for the estimator and closed-loop positioning are presented and compared with ground truth from a motion capture system.
Resumo:
There is limited understanding about business strategies related to parliamentary government's departments. This study focuses on the strategies of departments of two state governments in Australia. The strategies are derived from department strategic plans available in public domain and collected from respective websites. The results of this research indicate that strategies fall into seven categories: internal, development, political, partnership, environment, reorientation and status quo. The strategies of the departments are mainly internal or development where development strategy is mainly the focus of departments such as transport, and infrastructure. Political strategy is prevalent for departments related to communities, and education and training. Further three layers of strategies are identified as kernel, cluster and individual, which are mapped to the developed taxonomy.
Resumo:
For many years, computer vision has lured researchers with promises of a low-cost, passive, lightweight and information-rich sensor suitable for navigation purposes. The prime difficulty in vision-based navigation is that the navigation solution will continually drift with time unless external information is available, whether it be cues from the appearance of the scene, a map of features (whether built online or known a priori), or from an externally-referenced sensor. It is not merely position that is of interest in the navigation problem. Attitude (i.e. the angular orientation of a body with respect to a reference frame) is integral to a visionbased navigation solution and is often of interest in its own right (e.g. flight control). This thesis examines vision-based attitude estimation in an aerospace environment, and two methods are proposed for constraining drift in the attitude solution; one through a novel integration of optical flow and the detection of the sky horizon, and the other through a loosely-coupled integration of Visual Odometry and GPS position measurements. In the first method, roll angle, pitch angle and the three aircraft body rates are recovered though a novel method of tracking the horizon over time and integrating the horizonderived attitude information with optical flow. An image processing front-end is used to select several candidate lines in a image that may or may not correspond to the true horizon, and the optical flow is calculated for each candidate line. Using an Extended Kalman Filter (EKF), the previously estimated aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and location of the horizon in the image. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To evaluate the accuracy of the algorithm, two flights were conducted, one using a highly dynamic Uninhabited Airborne Vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions where the horizon was partially obscured by terrain, haze and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42° and 0.71° respectively when compared with a truth attitude source. The Cessna 172 flight resulted in pitch and roll error standard deviations of 1.79° and 1.75° respectively. In the second method for estimating attitude, a novel integrated GPS/Visual Odometry (GPS/VO) navigation filter is proposed, using a structure similar to a classic looselycoupled GPS/INS error-state navigation filter. Under such an arrangement, the error dynamics of the system are derived and a Kalman Filter is developed for estimating the errors in position and attitude. Through similar analysis to the GPS/INS problem, it is shown that the proposed filter is capable of recovering the complete attitude (i.e. pitch, roll and yaw) of the platform when subjected to acceleration not parallel to velocity for both the monocular and stereo variants of the filter. Furthermore, it is shown that under general straight line motion (e.g. constant velocity), only the component of attitude in the direction of motion is unobservable. Numerical simulations are performed to demonstrate the observability properties of the GPS/VO filter in both the monocular and stereo camera configurations. Furthermore, the proposed filter is tested on imagery collected using a Cessna 172 to demonstrate the observability properties on real-world data. The proposed GPS/VO filter does not require additional restrictions or assumptions such as platform-specific dynamics, map-matching, feature-tracking, visual loop-closing, gravity vector or additional sensors such as an IMU or magnetic compass. Since no platformspecific dynamics are required, the proposed filter is not limited to the aerospace domain and has the potential to be deployed in other platforms such as ground robots or mobile phones.
Resumo:
The immune system plays an important role in defending the body against tumours and other threats. Currently, mechanisms involved in immune system interactions with tumour cells are not fully understood. Here we develop a mathematical tool that can be used in aiding to address this shortfall in understanding. This paper de- scribes a hybrid cellular automata model of the interaction between a growing tumour and cells of the innate and specific immune system including the effects of chemokines that builds on previous models of tumour-immune system interactions. In particular, the model is focused on the response of immune cells to tumour cells and how the dynamics of the tumour cells change due to the immune system of the host. We present results and predictions of in silico experiments including simulations of Kaplan-Meier survival-like curves.
Resumo:
Listening comprehension is the primary channel of learning a language. Yet of the four dominant macro-skills (listening, speaking, reading and writing), it is often difficult and inaccessible for second and foreign language learners due to its implicit process. The secondary skill, speaking, proceeds listening cognitively. Aural/oral skills precede the graphic skills, such as reading and writing, as they form the circle of language learning process. However, despite the significant relationship with other language skills, listening comprehension is treated lightly in the applied linguistics research. Half of our daily conversation and three quarters of classroom interaction are virtually devoted to listening comprehension. To examine the relationship of listening skill with other language skills, the outcome of 1800 Iranian participants undertaking International English Language Testing System (IELTS) in Tehran indicates the close correlation between listening comprehension and the overall language proficiency.
Resumo:
This paper is a selected review of research on issues surrounding the investigation of intra-familial child sexual abuse for children aged eight and above, in the criminal justice system. Particular attention is paid to features of the investigative interview in relation to the child's level of understanding, ability to report and likely emotional response when the proceedings take place. Best practice by police and social care agencies involves establishing valid and reliable information from children while attending to their developmental level and emotional state. The review aims to distil principles optimising this process from both the investigative judicial perspective and the child's focus, as well as from the inter-agency perspective and information sharing. Recommendations are made for improving the interview process based on research and methods from a range of disciplines and to optimise information recording in a format easily shared between agencies. Updated and ongoing training procedures are key to successful practice with training shared across police and social work agencies. The focus of this review is informed by preliminary findings from pilot research in progress on behalf of the Metropolitan Police Child Abuse Investigation Command.
Resumo:
The world is facing problems due to the effects of increased atmospheric pollution, climate change and global warming. Innovative technologies to identify, quantify and assess fluxes exchange of the pollutant gases between the Earth’s surface and atmosphere are required. This paper proposes the development of a gas sensor system for a small UAV to monitor pollutant gases, collect data and geo-locate where the sample was taken. The prototype has two principal systems: a light portable gas sensor and an optional electric–solar powered UAV. The prototype will be suitable to: operate in the lower troposphere (100-500m); collect samples; stamp time and geo-locate each sample. One of the limitations of a small UAV is the limited power available therefore a small and low power consumption payload is designed and built for this research. The specific gases targeted in this research are NO2, mostly produce by traffic, and NH3 from farming, with concentrations above 0.05 ppm and 35 ppm respectively which are harmful to human health. The developed prototype will be a useful tool for scientists to analyse the behaviour and tendencies of pollutant gases producing more realistic models of them.