920 resultados para NIRS. Bactérias. PCA. SIMCA. PLS-DA
Resumo:
This paper analyses multivariate statistical techniques for identifying and isolating abnormal process behaviour. These techniques include contribution charts and variable reconstructions that relate to the application of principal component analysis (PCA). The analysis reveals firstly that contribution charts produce variable contributions which are linearly dependent and may lead to an incorrect diagnosis, if the number of principal components retained is close to the number of recorded process variables. The analysis secondly yields that variable reconstruction affects the geometry of the PCA decomposition. The paper further introduces an improved variable reconstruction method for identifying multiple sensor and process faults and for isolating their influence upon the recorded process variables. It is shown that this can accommodate the effect of reconstruction, i.e. changes in the covariance matrix of the sensor readings and correctly re-defining the PCA-based monitoring statistics and their confidence limits. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Populations of Gammarus duebeni celticus, previously the only amphipod species resident in the rivers of the Lough Neagh catchment, N. Ireland, have been subjected to invasion by G. pulex from the British mainland. Numerous previous studies have investigated the potential behavioural mechanisms, principally differential mutual predation, underlying the replacement of G. d. celticus by G. pulex in Irish waters, and the mutually exclusive distributions of these species in Britain and mainland Europe. However, the relative degree of influence of abiotic versus biotic factors in structuring these amphipod communities remains unresolved. This study used principal component analysis (PCA) to distinguish physico-chemical parameters that have significant roles in determining the current distribution of G. pulex relative to G. d. celticus in L. Neagh rivers. We show that the original domination of rivers by the native G. d, celticus has changed radically, with many sites in several rivers containing either both species or only G. pulex. G. pulex was more abundant than the G. d. celticus in sites with low dissolved oxygen levels. This was reflected in the macroinvertebrate assemblages associated with G. pulex in these sites, which tended to be those tolerant of low biological water quality. The present study thus emphasizes the importance of the habitat template, particularly water quality, for Gammarus spp. interactions. If rivers become increasingly stressed by organic pollution, it is probable the range expansion of G. pulex will continue. Because these two species are not ecological equivalents, the outcomes of G. pulex incursions into G. d. celticus sites may ultimately depend on the prevailing physico-chemical regimes in each site.
Resumo:
Subspace monitoring has recently been proposed as a condition monitoring tool that requires considerably fewer variables to be analysed compared to dynamic principal component analysis (PCA). This paper analyses subspace monitoring in identifying and isolating fault conditions, which reveals that the existing work suffers from inherent limitations if complex fault senarios arise. Based on the assumption that the fault signature is deterministic while the monitored variables are stochastic, the paper introduces a regression-based reconstruction technique to overcome these limitations. The utility of the proposed fault identification and isolation method is shown using a simulation example and the analysis of experimental data from an industrial reactive distillation unit.
Resumo:
We present experimental results on benchmark problems in 3D cubic lattice structures with the Miyazawa-Jernigan energy function for two local search procedures that utilise the pull-move set: (i) population-based local search (PLS) that traverses the energy landscape with greedy steps towards (potential) local minima followed by upward steps up to a certain level of the objective function; (ii) simulated annealing with a logarithmic cooling schedule (LSA). The parameter settings for PLS are derived from short LSA-runs executed in pre-processing and the procedure utilises tabu lists generated for each member of the population. In terms of the total number of energy function evaluations both methods perform equally well, however. PLS has the potential of being parallelised with an expected speed-up in the region of the population size. Furthermore, both methods require a significant smaller number of function evaluations when compared to Monte Carlo simulations with kink-jump moves. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper introduces the application of linear multivariate statistical techniques, including partial least squares (PLS), canonical correlation analysis (CCA) and reduced rank regression (RRR), into the area of Systems Biology. This new approach aims to extract the important proteins embedded in complex signal transduction pathway models.The analysis is performed on a model of intracellular signalling along the janus-associated kinases/signal transducers and transcription factors (JAK/STAT) and mitogen activated protein kinases (MAPK) signal transduction pathways in interleukin-6 (IL6) stimulated hepatocytes, which produce signal transducer and activator of transcription factor 3 (STAT3).A region of redundancy within the MAPK pathway that does not affect the STAT3 transcription was identified using CCA. This is the core finding of this analysis and cannot be obtained by inspecting the model by eye. In addition, RRR was found to isolate terms that do not significantly contribute to changes in protein concentrations, while the application of PLS does not provide such a detailed picture by virtue of its construction.This analysis has a similar objective to conventional model reduction techniques with the advantage of maintaining the meaning of the states prior to and after the reduction process. A significant model reduction is performed, with a marginal loss in accuracy, offering a more concise model while maintaining the main influencing factors on the STAT3 transcription.The findings offer a deeper understanding of the reaction terms involved, confirm the relevance of several proteins to the production of Acute Phase Proteins and complement existing findings regarding cross-talk between the two signalling pathways.
Resumo:
Logistic regression and Gaussian mixture model (GMM) classifiers have been trained to estimate the probability of acute myocardial infarction (AMI) in patients based upon the concentrations of a panel of cardiac markers. The panel consists of two new markers, fatty acid binding protein (FABP) and glycogen phosphorylase BB (GPBB), in addition to the traditional cardiac troponin I (cTnI), creatine kinase MB (CKMB) and myoglobin. The effect of using principal component analysis (PCA) and Fisher discriminant analysis (FDA) to preprocess the marker concentrations was also investigated. The need for classifiers to give an accurate estimate of the probability of AMI is argued and three categories of performance measure are described, namely discriminatory ability, sharpness, and reliability. Numerical performance measures for each category are given and applied. The optimum classifier, based solely upon the samples take on admission, was the logistic regression classifier using FDA preprocessing. This gave an accuracy of 0.85 (95% confidence interval: 0.78-0.91) and a normalised Brier score of 0.89. When samples at both admission and a further time, 1-6 h later, were included, the performance increased significantly, showing that logistic regression classifiers can indeed use the information from the five cardiac markers to accurately and reliably estimate the probability AMI. © Springer-Verlag London Limited 2008.
Resumo:
The present study examined the consistency over time of individual differences in behavioral and physiological responsiveness of calves to intuitively alarming test situations as well as the relationships between behavioral and physiological measures. Twenty Holstein Friesian heifer calves were individually subjected to the same series of two behavioral and two hypothalamo-pituitary-adrenocortical (HPA) axis reactivity tests at 3, 13 and 26 weeks of age. Novel environment (open field, OF) and novel object (NO) tests involved measurement of behavioral, plasma cortisol and heart rate responses. Plasma ACTH and/or cortisol response profiles were determined after administration of exogenous CRH and ACTH, respectively, in the HPA axis reactivity tests. Principal component analysis (PCA) was used to condense correlated measures within ages into principal components reflecting independent dimensions underlying the calves' reactivity. Cortisol responses to the OF and NO tests were positively associated with the latency to contact and negatively related to the time spent in contact with the NO. Individual differences in scores of a principal component summarizing this pattern of inter-correlations, as well as differences in separate measures of adrenocortical and behavioral reactivity in the OF and NO tests proved highly consistent over time. The cardiac response to confinement in a start box prior to the OF test was positively associated with the cortisol responses to the OF and NO tests at 26 weeks of age. HPA axis reactivity to ACTH or CRH was unrelated to adrenocortical and behavioral responses to novelty. These findings strongly suggest that the responsiveness of calves was mediated by stable individual characteristics. Correlated adrenocortical and behavioral responses to novelty may reflect underlying fearfulness, defining the individual's susceptibility to the elicitation of fear. Other independent characteristics mediating reactivity may include activity or coping style (related to locomotion) and underlying sociality (associated with vocalization). (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The monitoring of multivariate systems that exhibit non-Gaussian behavior is addressed. Existing work advocates the use of independent component analysis (ICA) to extract the underlying non-Gaussian data structure. Since some of the source signals may be Gaussian, the use of principal component analysis (PCA) is proposed to capture the Gaussian and non-Gaussian source signals. A subsequent application of ICA then allows the extraction of non-Gaussian components from the retained principal components (PCs). A further contribution is the utilization of a support vector data description to determine a confidence limit for the non-Gaussian components. Finally, a statistical test is developed for determining how many non-Gaussian components are encapsulated within the retained PCs, and associated monitoring statistics are defined. The utility of the proposed scheme is demonstrated by a simulation example, and the analysis of recorded data from an industrial melter.
Resumo:
In this paper, a novel motion-tracking scheme using scale-invariant features is proposed for automatic cell motility analysis in gray-scale microscopic videos, particularly for the live-cell tracking in low-contrast differential interference contrast (DIC) microscopy. In the proposed approach, scale-invariant feature transform (SIFT) points around live cells in the microscopic image are detected, and a structure locality preservation (SLP) scheme using Laplacian Eigenmap is proposed to track the SIFT feature points along successive frames of low-contrast DIC videos. Experiments on low-contrast DIC microscopic videos of various live-cell lines shows that in comparison with principal component analysis (PCA) based SIFT tracking, the proposed Laplacian-SIFT can significantly reduce the error rate of SIFT feature tracking. With this enhancement, further experimental results demonstrate that the proposed scheme is a robust and accurate approach to tackling the challenge of live-cell tracking in DIC microscopy.
Resumo:
Papillon-Lefevre syndrome, or keratosis palmoplantaris with periodontopathia (PLS, MIM 245000), is an autosomal recessive disorder that is mainly ascertained by dentists because of the severe periodontitis that afflicts patients(1,2). Both the deciduous and permanent dentitions are affected, resulting in premature tooth loss. Palmoplantar keratosis, varying from mild psoriasiform scaly skin to overt hyperkeratosis, typically develops within the first three years of life. Keratosis also affects other sites such as elbows and knees. Most PLS patients display both periodontitis and hyperkeratosis. some patients have only palmoplantar keratosis or periodontitis, and in rare individuals the periodontitis is mild and of late onset(3-6). The PLS locus has been mapped to chromosome 11q14-q21 (refs 7-9). Using homozygosity mapping in eight small consanguineous families, we have narrowed the candidate region to a 1.2-cM interval between D11S4082 and D11S931. The gene (CTSC) encoding the lysosomal protease cathepsin C (or dipeptidyl aminopeptidase I) lies within this interval. We defined the genomic structure of CTSC and found mutations in all eight families. In two of these families we used a functional assay to demonstrate an almost total loss of cathepsin C activity in PLS patients and reduced activity in obligate carriers.
Resumo:
Higher heating value (HHV) is probably the most important property of the fuels. Bomb calorimeter and derived empirical formulae are often used for accurate determination of HHV of fuels. A useful empirical equation was derived to estimate HHV of petro-diesels from their C and H contents: HHV (in MJ/kg) = 0.3482(C) + 1.1887(H), r (2) = 0.9956. The derived correlation was validated against the most common formulae in the literature, Boie and Channiwala-Parikh correlations. Accordingly, accurate determination of C and H contents is essential for estimation of HHV and avoids using a bomb calorimeter. However, accurate estimation of C and H contents requires using expensive and laborious gas chromatographic techniques. In this work, chemometry offered a simple method for HHV determination of petro-diesels without using bomb calorimeter or even gas chromatography. PLS-1 calibration was used instead of gas chromatography to find C and H contents from the non-selective mid-infrared (MIR) spectra of petro-diesels, HHV was then estimated from the earlier empirical equation. The proposed method predicts HHV of petro-diesels with high accuracy and precision, with modest analysis costs. The present method may be extended to other fuels.
Resumo:
Studies of individual nutrients or foods have revealed much about dietary influences on bone. Multiple food or nutrient approaches, such as dietary pattern analysis, could offer further insight but research is limited and largely confined to older adults. We examined the relationship between dietary patterns, obtained by a posteriori and a priori methods, and bone mineral status (BMS; collective term for bone mineral content (BMC) and bone mineral density (BMD)) in young adults (20-25 years; n 489). Diet was assessed by 7 d diet history and BMD and BMC were determined at the lumbar spine and femoral neck (FN). A posteriori dietary patterns were derived using principal component analysis (PCA) and three a priori dietary quality scores were applied (dietary diversity score (DDS), nutritional risk score and Mediterranean diet score). For the PCA-derived dietary patterns, women in the top compared to the bottom fifth of the 'Nuts and Meat' pattern had greater FN BMD by 0.074 g/cm(2) (P=0.049) and FN BMC by 0.40 g (P=0.034) after adjustment for confounders. Similarly, men in the top compared to the bottom fifth of the 'Refined' pattern had lower FN BMC by 0.41 g (P-0.049). For the a priori DDS, women in the top compared to the bottom third had lower FN BMD by 0.05 g/cm(2) after adjustments (P=0.052), but no other relationships with BMS were identified. In conclusion, adherence to a 'Nuts and Meat' dietary pattern may be associated with greater BMS in young women and a 'Refined' dietary pattern may be detrimental for bone health in young men.
Resumo:
Gabor features have been recognized as one of the most successful face representations. Encouraged by the results given by this approach, other kind of facial representations based on Steerable Gaussian first order kernels and Harris corner detector are proposed in this paper. In order to reduce the high dimensional feature space, PCA and LDA techniques are employed. Once the features have been extracted, AdaBoost learning algorithm is used to select and combine the most representative features. The experimental results on XM2VTS database show an encouraging recognition rate, showing an important improvement with respect to face descriptors only based on Gabor filters.
Resumo:
In this paper, we present a Statistical Shape Model for Human Figure Segmentation in gait sequences. Point Distribution Models (PDM) generally use Principal Component analysis (PCA) to describe the main directions of variation in the training set. However, PCA assumes a number of restrictions on the data that do not always hold. In this work, we explore the potential of Independent Component Analysis (ICA) as an alternative shape decomposition to the PDM-based Human Figure Segmentation. The shape model obtained enables accurate estimation of human figures despite segmentation errors in the input silhouettes and has really good convergence qualities.
Resumo:
In this paper we propose a statistical model for detection and tracking of human silhouette and the corresponding 3D skeletal structure in gait sequences. We follow a point distribution model (PDM) approach using a Principal Component Analysis (PCA). The problem of non-lineal PCA is partially resolved by applying a different PDM depending of pose estimation; frontal, lateral and diagonal, estimated by Fisher's linear discriminant. Additionally, the fitting is carried out by selecting the closest allowable shape from the training set by means of a nearest neighbor classifier. To improve the performance of the model we develop a human gait analysis to take into account temporal dynamic to track the human body. The incorporation of temporal constraints on the model increase reliability and robustness.