999 resultados para Multiple endpoints
Resumo:
An experiment was designed to assess the occurrence of multiple antibiotic resistances in Vibrio sp from different (brackish and marine) environments. Water samples front nine marine landing sites and two coastal inland aquaculture farms were screened for the Vihrio spp and assessed their resistance to twenty-two different antibiotics, which arc commonly encountered in the aquatic ecosystem. Tissue samples (shrimp, mussel and sepia) were tested from the sampling site with highest antibiotic resistance. Of' the total 119 Vihrio isolates, 16. 8'7(, were susceptible to all antibiotics. Of the resistant (83.19%) Vibrio strains, 30.3% were resistant against three antibiotics, 55.5% were resistant against 4-10 antibiotics, 14.14% were resistant against more than 10 antibiotics and 54% have shown multiple antibiotics resistance (MAR). Antibiotic resistance index was higher in Coastal 3, 6, Aqua farm 2 in isolates from water samples and all the tissues tested. Interestingly, incidence of antibiotic resistance in isolates from water samples was comparatively lower in aquaculture farms than that observed in coastal areas. Highest incidence of antibiotic resistance was evident against Amoxycillin, Ampicillin, Carbencillin and Cefuroxime followed by Rilanipicin and Streptomycin and lowest against Chloramphenicol, Tetracycline, Chlortetracycline, Furazolidone, Nalidixic acid, Gentamycin Sulphafurazole, Trimcthoprinr, Neomycin and Amikacin irrespective of the sampling sites. Results from various tissue samples collected from the sites of highest antibiotic resistance indicated that antibiotic resistance Vibrio spp collected from fish and tissue samples were higher than that of water samples. Overall results indicated that persistent use of antibiotics against diseases in human beings and other life forms may pollute the aquatic system and their impact on developing antibiotic resistant Vibrio sp may be a serious threat in addition to the use of antibiotics in aquaculture farms.
Resumo:
This work presents an explicit formulation for multiple- edge diffraction for mobile radiowave propagation in terms of uniform theory of diffraction (UTD) coefficients when a spherical incident wave is considered. This solution can be used in an UTD context and sharply reduces the computing time over existing formulation. Results can be applied in the planning of microcellular systems
Resumo:
The fabrication and characterization of a fibre optic pH sensor based on evanescent wave absorption is presented. The unclad portion of a multi-mode optical fibre is coated with a pH sensitive dye, which is immobilized by the sol–gel route. The sensitivity of the device has been found to increase when multiple sol–gel coatings are used as the sensing region. The dynamic range and the temporal response of the sensor are investigated for two different dyes, namely bromocresol purple and bromocresol green. The performance of the device is evaluated in terms of the results obtained during actual measurements.
Resumo:
The fabrication and characterization of a fibre optic pH sensor based on evanescent wave absorption is presented. The unclad portion of a multi-mode optical fibre is coated with a pH sensitive dye, which is immobilized by the sol–gel route. The sensitivity of the device has been found to increase when multiple sol–gel coatings are used as the sensing region. The dynamic range and the temporal response of the sensor are investigated for two different dyes, namely bromocresol purple and bromocresol green. The performance of the device is evaluated in terms of the results obtained during actual measurements
Resumo:
The fabrication and characterization of a fibre optic pH sensor based on evanescent wave absorption is presented. The unclad portion of a multi-mode optical fibre is coated with a pH sensitive dye, which is immobilized by the sol–gel route. The sensitivity of the device has been found to increase when multiple sol–gel coatings are used as the sensing region. The dynamic range and the temporal response of the sensor are investigated for two different dyes, namely bromocresol purple and bromocresol green. The performance of the device is evaluated in terms of the results obtained during actual measurements
Resumo:
This thesis presents analytical and numerical results from studies based on the multiple quantum well laser rate equation model. We address the problem of controlling chaos produced by direct modulation of laser diodes. We consider the delay feedback control methods for this purpose and study their performance using numerical simulation. Besides the control of chaos, control of other nonlinear effects such as quasiperiodicity and bistability using delay feedback methods are also investigated.A number of secure communication schemes based on synchronization of chaos semiconductor lasers have been successfully demonstrated theoretically and experimentally. The current investigations in these field include the study of practical issues on the implementations of such encryption schemes. We theoretically study the issues such as channel delay, phase mismatch and frequency detuning on the synchronization of chaos in directly modulated laser diodes. It would be helpful for designing and implementing chaotic encryption schemes using synchronization of chaos in modulated semiconductor lasers.
Resumo:
During 1990's the Wavelet Transform emerged as an important signal processing tool with potential applications in time-frequency analysis and non-stationary signal processing.Wavelets have gained popularity in broad range of disciplines like signal/image compression, medical diagnostics, boundary value problems, geophysical signal processing, statistical signal processing,pattern recognition,underwater acoustics etc.In 1993, G. Evangelista introduced the Pitch- synchronous Wavelet Transform, which is particularly suited for pseudo-periodic signal processing.The work presented in this thesis mainly concentrates on two interrelated topics in signal processing,viz. the Wavelet Transform based signal compression and the computation of Discrete Wavelet Transform. A new compression scheme is described in which the Pitch-Synchronous Wavelet Transform technique is combined with the popular linear Predictive Coding method for pseudo-periodic signal processing. Subsequently,A novel Parallel Multiple Subsequence structure is presented for the efficient computation of Wavelet Transform. Case studies also presented to highlight the potential applications.
Resumo:
The present research problem is to study the existing encryption methods and to develop a new technique which is performance wise superior to other existing techniques and at the same time can be very well incorporated in the communication channels of Fault Tolerant Hard Real time systems along with existing Error Checking / Error Correcting codes, so that the intention of eaves dropping can be defeated. There are many encryption methods available now. Each method has got it's own merits and demerits. Similarly, many crypt analysis techniques which adversaries use are also available.
Resumo:
The fabrication and characterization of a fibre optic pH sensor based on evanescent wave absorption is presented. The unclad portion of a multi-mode optical fibre is coated with a pH sensitive dye, which is immobilized by the sol–gel route. The sensitivity of the device has been found to increase when multiple sol–gel coatings are used as the sensing region. The dynamic range and the temporal response of the sensor are investigated for two different dyes, namely bromocresol purple and bromocresol green. The performance of the device is evaluated in terms of the results obtained during actual measurements.
Resumo:
We present the analytical investigations on a logistic map with a discontinuity at the centre. An explanation for the bifurcation phenomenon in discontinuous systems is presented. We establish that whenever the elements of an n-cycle (n > 1) approach the discontinuities of the nth iterate of the map, a bifurcation other than the usual period-doubling one takes place. The periods of the cycles decrease in an arithmetic progression, as the control parameter is varied. The system also shows the presence of multiple attractors. Our results are verified by numerical experiments as well.
Resumo:
Data centre is a centralized repository,either physical or virtual,for the storage,management and dissemination of data and information organized around a particular body and nerve centre of the present IT revolution.Data centre are expected to serve uniinterruptedly round the year enabling them to perform their functions,it consumes enormous energy in the present scenario.Tremendous growth in the demand from IT Industry made it customary to develop newer technologies for the better operation of data centre.Energy conservation activities in data centre mainly concentrate on the air conditioning system since it is the major mechanical sub-system which consumes considerable share of the total power consumption of the data centre.The data centre energy matrix is best represented by power utilization efficiency(PUE),which is defined as the ratio of the total facility power to the IT equipment power.Its value will be greater than one and a large value of PUE indicates that the sub-systems draw more power from the facility and the performance of the data will be poor from the stand point of energy conservation. PUE values of 1.4 to 1.6 are acievable by proper design and management techniques.Optimizing the air conditioning systems brings enormous opportunity in bringing down the PUE value.The air conditioning system can be optimized by two approaches namely,thermal management and air flow management.thermal management systems are now introduced by some companies but they are highly sophisticated and costly and do not catch much attention in the thumb rules.
Resumo:
This thesis Entitled “modelling and analysis of recurrent event data with multiple causes.Survival data is a term used for describing data that measures the time to occurrence of an event.In survival studies, the time to occurrence of an event is generally referred to as lifetime.Recurrent event data are commonly encountered in longitudinal studies when individuals are followed to observe the repeated occurrences of certain events. In many practical situations, individuals under study are exposed to the failure due to more than one causes and the eventual failure can be attributed to exactly one of these causes.The proposed model was useful in real life situations to study the effect of covariates on recurrences of certain events due to different causes.In Chapter 3, an additive hazards model for gap time distributions of recurrent event data with multiple causes was introduced. The parameter estimation and asymptotic properties were discussed .In Chapter 4, a shared frailty model for the analysis of bivariate competing risks data was presented and the estimation procedures for shared gamma frailty model, without covariates and with covariates, using EM algorithm were discussed. In Chapter 6, two nonparametric estimators for bivariate survivor function of paired recurrent event data were developed. The asymptotic properties of the estimators were studied. The proposed estimators were applied to a real life data set. Simulation studies were carried out to find the efficiency of the proposed estimators.
Resumo:
In this paper we show that if the electrons in a quantum Hall sample are subjected to a constant electric field in the plane of the material, comparable in magnitude to the background magnetic field on the system of electrons, a multiplicity of edge states localized at different regions of space is produced in the sample. The actions governing the dynamics of these edge states are obtained starting from the well-known Schrödinger field theory for a system of nonrelativistic electrons, where on top of the constant background electric and magnetic fields, the electrons are further subject to slowly varying weak electromagnetic fields. In the regions between the edges, dubbed as the "bulk," the fermions can be integrated out entirely and the dynamics expressed in terms of a local effective action involving the slowly varying electromagnetic potentials. It is further shown how the bulk action is gauge noninvariant in a particular way, and how the edge states conspire to restore the U(1) electromagnetic gauge invariance of the system. In the edge action we obtain a heretofore unnoticed gauge-invariant term that depends on the particular edge. We argue that this term may be detected experimentally as different edges respond differently to a monochromatic probe due to this term
Resumo:
In this paper we study the evolution of the kinetic features of the martensitic transition in a Cu-Al-Mn single crystal under thermal cycling. The use of several experimental techniques including optical microscopy, calorimetry, and acoustic emission, has enabled us to perform an analysis at multiple scales. In particular, we have focused on the analysis of avalanche events (associated with the nucleation and growth of martensitic domains), which occur during the transition. There are significant differences between the kinetics at large and small length scales. On the one hand, at small length scales, small avalanche events tend to sum to give new larger events in subsequent loops. On the other hand, at large length scales the large domains tend to split into smaller ones on thermal cycling. We suggest that such different behavior is the necessary ingredient that leads the system to the final critical state corresponding to a power-law distribution of avalanches.
Resumo:
This work identifies the importance of plenum pressure on the performance of the data centre. The present methodology followed in the industry considers the pressure drop across the tile as a dependant variable, but it is shown in this work that this is the only one independent variable that is responsible for the entire flow dynamics in the data centre, and any design or assessment procedure must consider the pressure difference across the tile as the primary independent variable. This concept is further explained by the studies on the effect of dampers on the flow characteristics. The dampers have found to introduce an additional pressure drop there by reducing the effective pressure drop across the tile. The effect of damper is to change the flow both in quantitative and qualitative aspects. But the effect of damper on the flow in the quantitative aspect is only considered while using the damper as an aid for capacity control. Results from the present study suggest that the use of dampers must be avoided in data centre and well designed tiles which give required flow rates must be used in the appropriate locations. In the present study the effect of hot air recirculation is studied with suitable assumptions. It identifies that, the pressure drop across the tile is a dominant parameter which governs the recirculation. The rack suction pressure of the hardware along with the pressure drop across the tile determines the point of recirculation in the cold aisle. The positioning of hardware in the racks play an important role in controlling the recirculation point. The present study is thus helpful in the design of data centre air flow, based on the theory of jets. The air flow can be modelled both quantitatively and qualitatively based on the results.