994 resultados para Mineral salt
Resumo:
(abreviated) We aim to study the inner-wind structure (R<250 Rstar) of the well-known red supergiant VY CMa. We analyse high spatial resolution (~0".24x0".13) ALMA Science Verification (SV) data in band 7 in which four thermal emission lines of gaseous sodium chloride (NaCl) are present at high signal-to-noise ratio. For the first time, the NaCl emission in the inner wind region of VY CMa is spatially resolved. The ALMA observations reveal the contribution of up to four different spatial regions. The NaCl emission pattern is different compared to the dust continuum and TiO2 emission already analysed from the ALMA SV data. The emission can be reconciled with an axisymmetric geometry, where the lower density polar/rotation axis has a position angle of ~50 degrees measured from north to east. However, this picture can not capture the full morphological diversity, and discrete mass ejection events need to be invoked to explain localized higher-density regions. The velocity traced by the gaseous NaCl line profiles is significantly lower than the average wind terminal velocity, and much slower than some of the fastest mass ejections, signalling a wide range of characteristic speeds for the mass loss. Gaseous NaCl is detected far beyond the main dust condensation region. Realising the refractory nature of this metal halide, this hints at a chemical process preventing all NaCl from condensing onto dust grains. We show that in the case of the ratio of the surface binding temperature to the grain temperature being ~50, only some 10% of NaCl remains in gaseous form, while for lower values of this ratio thermal desorption efficiently evaporates NaCl. Photodesorption by stellar photons seems not to be a viable explanation for the detection of gaseous NaCl at 220 Rstar from the central star, and instead, we propose shock-induced sputtering driven by localized mass ejection events as alternative.
Resumo:
Ria deAveiro is a very complex shallow water coastal lagoon located on the northwest of Portugal. Important issues would be left unanswered without a good understanding of hydrodynamic and transport processes occurring in the lagoon. Calibration and validation of hydrodynamic, salt and heat transport models for Ria de Aveiro lagoon are presented. The calibration of the hydrodynamic model was performed adjusting the bottom friction coefficient, through the comparison between measured and predicted time series of sea surface elevation for 22 stations. Harmonic analysis was performed in order to evaluate the model's accuracy. To validate the hydrodynamic model measured and predicted SSE values were compared for 11 stations, as well as main flow direction velocities for 10 stations. The salt and heat transport models were calibrated comparing measured and predicted time series of salinity and water temperature for 7 stations, and the RMS of the difference between the series was determined. These models were validated comparing the model results with an independent field data set. The hydrodynamic and the salt and heat transport models for Ria de Aveiro were successfully calibrated and validated. They reproduce accurately the barotropic flows and can therefore adequately represent the salt and heat transport and the heat transfer processes occurring in Ria deAveiro.
Resumo:
Sea salt is a natural product obtained from the evaporation of seawater in saltpans due to the combined effect of wind and sunlight. Nowadays, there is a growing interest for protection and re-valorisation of saltpans intrinsically associated to the quality of sea salt that can be evaluated by its physico-chemical properties. These man-made systems can be located in different geographical areas presenting different environmental surroundings. During the crystallization process, organic compounds coming from these surroundings can be incorporated into sea salt crystals, influencing their final composition. The organic matter associated to sea salt arises from three main sources: algae, surrounding bacterial community, and anthropogenic activity. Based on the hypothesis that sea salt contains associated organic compounds that can be used as markers of the product, including saltpans surrounding environment, the aim of this PhD thesis was to identify these compounds. With this purpose, this work comprised: 1) a deep characterisation of the volatile composition of sea salt by headspace solid phase microextraction combined with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (HS-SPME/GCGC–ToFMS) methodology, in search of potential sea salt volatile markers; 2) the development of a methodology to isolate the polymeric material potentially present in sea salt, in amounts that allow its characterisation in terms of polysaccharides and protein; and 3) to explore the possible presence of triacylglycerides. The high chromatographic resolution and sensitivity of GC×GC–ToFMS enabled the separation and identification of a higher number of volatile compounds from sea salt, about three folds, compared to unidimentional chromatography (GC–qMS). The chromatographic contour plots obtained revealed the complexity of marine salt volatile composition and confirmed the relevance of GC×GC–ToFMS for this type of analysis. The structured bidimentional chromatographic profile arising from 1D volatility and 2D polarity was demonstrated, allowing more reliable identifications. Results obtained for analysis of salt from two locations in Aveiro and harvested over three years suggest the loss of volatile compounds along the time of storage of the salt. From Atlantic Ocean salts of seven different geographical origins, all produced in 2007, it was possible to identify a sub-set of ten compounds present in all salts, namely 6-methyl-5-hepten-2-one, 2,2,6-trimethylcyclohexanone, isophorone, ketoisophorone, β-ionone-5,6-epoxide, dihydroactinidiolide, 6,10,14-trimethyl-2-pentadecanone, 3-hydroxy-2,4,4-trimethylpentyl 2-methylpropanoate, 2,4,4-trimethylpentane-1,3-diyl bis(2-methylpropanoate), and 2-ethyl-1-hexanol. These ten compounds were considered potential volatile markers of sea salt. Seven of these compounds are carotenoid-derived compounds, and the other three may result from the integration of compounds from anthropogenic activity as metabolites of marine organisms. The present PhD work also allowed the isolation and characterisation, for the first time, of polymeric material from sea salt, using 16 Atlantic Ocean salts. A dialysis-based methodology was developed to isolate the polymeric material from sea salt in amounts that allowed its characterisation. The median content of polymeric material isolated from the 16 salts was 144 mg per kg of salt, e.g. 0.014% (w/w). Mid-infrared spectroscopy and thermogravimetry revealed the main occurrence of sulfated polysaccharides, as well as the presence of protein in the polymeric material from sea salt. Sea salt polysaccharides were found to be rich in uronic acid residues (21 mol%), glucose (18), galactose (16), and fucose (13). Sulfate content represented a median of 45 mol%, being the median content of sulfated polysaccharides 461 mg/g of polymeric material, which accounted for 66 mg/kg of dry salt. Glycosidic linkage composition indicates that the main sugar residues that could carry one or more sulfate groups were identified as fucose and galactose. This fact allowed to infer that the polysaccharides from sea salt arise mainly from algae, due to their abundance and composition. The amino acid profile of the polymeric material from the 16 Atlantic Ocean salts showed as main residues, as medians, alanine (25 mol%), leucine (14), and valine (14), which are hydrophobic, being the median protein content 35 mg/g, i.e. 4,9 mg per kg of dry salt. Beside the occurrence of hydrophobic volatile compounds in sea salt, hydrophobic non-volatile compounds were also detected. Triacylglycerides were obtained from sea salt by soxhlet extraction with n-hexane. Fatty acid composition revealed palmitic acid as the major residue (43 mol%), followed by stearic (13), linolenic (13), oleic (12), and linoleic (9). Sea salt triacylglycerides median content was 1.5 mg per kg of dry salt. Both protein and triacylglycerides seem to arise from macro and microalgae, phytoplankton and cyanobacteria, due to their abundance and composition. Despite the variability resulting from saltpans surrounding environment, this PhD thesis allowed the identification of a sea salt characteristic organic compounds profile based on volatile compounds, polysaccharides, protein, and triacylglycerides.
Resumo:
Salt marshes are highly productive intertidal habitats that serve as nursery grounds for many commercially and economically important species. Because of their location and physical and biological characteristics, salt marshes are considered to be particularly vulnerable to anthropogenic inputs of oil hydrocarbons. Sediment contamination with oil is especially dangerous for salt marsh vegetation, since low molecular weight aromatic hydrocarbons can affect plants at all stages of development. However, the use of vegetation for bioremediation (phytoremediation), by removal or sequestration of contaminants, has been intensively studied. Phytoremediation is an efficient, inexpensive and environmental friendly approach for the removal of aromatic hydrocarbons, through direct incorporation by the plant and by the intervention of degrading microbial populations in the rhizosphere (microbe-assisted phytoremediation). Rhizosphere microbial communities are enriched in important catabolic genotypes for degradation of oil hydrocarbons (OH) which may have a potential for detoxification of the sediment surrounding the roots. In addition, since rhizosphere bacterial populations may also internalize into plant tissues (endophytes), rhizocompetent AH degrading populations may be important for in planta AH degradation and detoxification. The present study involved field work and microcosms experiments aiming the characterization of relevant plant-microbe interactions in oilimpacted salt marshes and the understanding of the effect of rhizosphere and endosphere bacteria in the role of salt marsh plants as potential phytoremediation agents. In the field approach, molecular tools were used to assess how plant species- and OH pollution affect sediment bacterial composition [bulk sediment and sediment surrounding the roots (rhizosphere) of Halimione portulacoides and Sarcocornia perennis subsp. perennis] in a temperate estuary (Ria de Aveiro, Portugal) chronically exposed to OH pollution. In addition, the 16S rRNA gene sequences retrieved in this study were used to generate in silico metagenomes and to evaluate the distribution of potential bacterial traits in different microhabitats. Moreover, a combination of culture-dependent and -independent approaches was used to investigate the effect of oil hydrocarbons contamination on the structure and function of endophytic bacterial communities of salt marsh plants.Root systems of H. portulacoides and S. perennis subsp. perennis appear to be able to exert a strong influence on bacterial composition and in silico metagenome analysis showed enrichment of genes involved in the process of polycyclic aromatic hydrocarbon (PAH) degradation in the rhizosphere of halophyte plants. The culturable fraction of endophytic degraders was essentially closely related to known OH-degrading Pseudomonas species and endophytic communities revealed sitespecific effects related to the level of OH contamination in the sediment. In order to determine the effects of oil contamination on plant condition and on the responses in terms of structure and function of the bacterial community associated with plant roots (rhizosphere, endosphere), a microcosms approach was set up. The salt marsh plant Halimione portulacoides was inoculated with a previous isolated Pseudomonas sp. endophytic degrader and the 2-methylnaphthalene was used as model PAH contaminant. The results showed that H. portulacoides health and growth were not affected by the contamination with the tested concentration. Moreover, the decrease of 2-methylnaphthalene at the end of experiment, can suggest that H. portulacoides can be considered as a potential plant for future uses in phytoremedition approaches of contaminated salt marsh. The acceleration of hydrocarbon degradation by inoculation of the plants with the hydrocarbon-degrading Pseudomonas sp. could not, however, be demonstrated, although the effects of inoculation on the structure of the endophytic community observed at the end of the experiment indicate that the strain may be an efficient colonizer of H. portulacoides roots. The results obtained in this work suggest that H. portulacoides tolerates moderate concentrations of 2-methylnaphthalene and can be regarded as a promising agent for phytoremedition approaches in salt marshes contaminated with oil hydrocarbons. Plant/microbe interactions may have an important role in the degradation process, as plants support a diverse endophytic bacterial community, enriched in genetic factors (genes and plasmids) for hydrocarbon degradation.
Resumo:
Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2007
Resumo:
Tese de doutoramento, Ecologia, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2003
Resumo:
One-year-old carob (Ceratonia siliqua L.) rootstock was grown in fertilised substrate to evaluate the effects of NaCl salinity stress. The experiment consisted of seven treatments with different concentrations of NaCl in the irrigation water: 0 (control), 15, 30, 40, 80, 120 and 240 (mmol L(-1)), equivalent to electrical conductivities of 0.0, 1.5, 2.9, 3.9, 7.5, 10.9 and 20.6 dS m(-1), respectively. Several growth parameters were measured throughout the experimental period. At the end of the experiment, pH, extractable P and K, and the electrical conductivity of the substrate were assessed in each salinity level. On the same date, the mineral composition of the leaves was compared. The carob rootstock tolerated 13.4 dS m(-1) for a period of 30 days but after 60 days the limit of tolerance was only 6.8 dS m(-1). Salt tolerance indexes were 12.8 and 4.5 for 30 and 60 days, respectively. This tolerance to salinity resulted from the ability to function with concentrations of Cl(-) and Na(+) in leaves up to 24.0 and 8.5 g kg(-1), respectively. Biomass allocation to shoots and roots was similar in all treatments, but after 40 days the number of leaves was reduced, particularly at the larger concentrations (120 and 240 mmol NaCl L(-1)). Leaves of plants irrigated with 240 mmol NaCl L(-1) became chlorotic after 30 days exposure. However, concentrations of N, P. Mg and Zn in leaves were not affected significantly (P > 0.05) by salinity. Apparently, K(+) and Ca(2+) were the key nutrients affected in the response of carob rootstocks to salinity. Plants grown with 80 and 120 mmol L(-1) of NaCl contained the greatest K. concentration. Na(+)/K(+) increased with salinity, due to an elevated Na(+) content but K(+) uptake was also enhanced, which alleviated some Na. stress. Ca(2+) concentration in leaves was not reduced under salinity. Salinization of irrigation water and subsequent impacts on agricultural soils are now common problems in the Mediterranean region. Under such conditions, carob seems to be a salt as well as a drought tolerant species. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Dissertação de mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Background and Aims In yeasts and animals, cyclin-dependent kinases are key regulators of cell cycle progression and are negatively and positively regulated by WEE1 kinase and CDC25 phosphatase, respectively. In higher plants a full-length orthologue of CDC25 has not been isolated but a shorter gene with homology only to the C-terminal catalytic domain is present. The Arabidopis thaliana;CDC25 can act as a phosphatase in vitro. Since in arabidopsis, WEE1 plays an important role in the DNA damage/DNA replication checkpoints, the role of Arath;CDC25 in conditions that induce these checkpoints or induce abiotic stress was tested. Methods arath;cdc25 T-DNA insertion lines, Arath;CDC25 over-expressing lines and wild type were challenged with hydroxyurea (HU) and zeocin, substances that stall DNA replication and damage DNA, respectively, together with an abiotic stressor, NaCl. A molecular and phenotypic assessment was made of all genotypes Key Results There was a null phenotypic response to perturbation of Arath;CDC25 expression under control conditions. However, compared with wild type, the arath;cdc25 T-DNA insertion lines were hypersensitive to HU, whereas the Arath;CDC25 over-expressing lines were relatively insensitive. In particular, the over-expressing lines consistently outgrew the T-DNA insertion lines and wild type when challenged with HU. All genotypes were equally sensitive to zeocin and NaCl. Conclusions Arath;CDC25 plays a role in overcoming stress imposed by HU, an agent know to induce the DNA replication checkpoint in arabidopsis. However, it could not enhance tolerance to either a zeocin treatment, known to induce DNA damage, or salinity stress.
Resumo:
Tese de doutoramento, Biologia (Ecologia), Universidade de Lisboa, Faculdade de Ciências, 2015
Resumo:
The most consumed squid species worldwide were characterized regarding their concentrations of minerals, fatty acids, cholesterol and vitamin E. Interspecific comparisons were assessed among species and geographical origin. The health benefits derived from squid consumption were assessed based on daily minerals intake and on nutritional lipid quality indexes. Squids contribute significantly to daily intake of several macro (Na, K, Mg and P) and micronutrients (Cu, Zn and Ni). Despite their low fat concentration, they are rich in long-chain omega-3 fatty acids, particularly docosahexaenoic (DHA) and eicosapentanoic (EPA) acids, with highly favorable ω-3/ω-6 ratios (from 5.7 to 17.7), reducing the significance of their high cholesterol concentration (140–549 mg/100 g ww). Assessment of potential health risks based on minerals intake, non-carcinogenic and carcinogenic risks indicated that Loligo gahi (from Atlantic Ocean), Loligo opalescens (from Pacific Ocean) and Loligo duvaucelii (from Indic Ocean) should be eaten with moderation due to the high concentrations of Cu and/or Cd. Canonical discriminant analysis identified the major fatty acids (C14:0, C18:0, C18:1, C18:3ω-3, C20:4ω-6 and C22:5ω-6), P, K, Cu and vitamin E as chemical discriminators for the selected species. These elements and compounds exhibited the potential to prove authenticity of the commercially relevant squid species.
Resumo:
Mestrado em Engenharia Química – Ramo Optimização Energética na Indústria Química
Resumo:
Restoration of Buildings and Monuments, vol.11, nº 2 (2005), p.105-110
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Este estudo tem como objetivo construir um modelo estocástico de alta resolução da morfologia e dos teores em metal, do depósito mineral do Zambujal, Mina de Neves-Corvo. O depósito do Zambujal é um corpo vulcanogénico que se localiza no setor Português, na parte mais a Sul da Faixa Piritosa Ibérica, com sulfuretos maciços no topo e fissurais na base. Para construir um modelo estocástico deste depósito, onde os teores em metal evidenciam zonamento, é importante ter em conta a proporção local de sulfuretos na matriz rochosa. Como esta variável não é quantificada em laboratório, propõe-se a utilização da densidade das amostras como um indicador indireto da proporção de minérios na matriz rochosa. Conhecida esta variável, a modelação dos teores em metal pode ser feita para os chamados teores relativos (teores em metal na fração de sulfuretos). As principais etapas da metodologia proposta são: (a) para cada amostra analisada no laboratório, estimação de soluções para a variável proporção de sulfuretos na matriz rochosa ????(????), tendo em conta a paragénese principal do depósito, os teores e a densidade da rocha; (b) construção de um modelo morfológico 3D de baixa resolução com duas regiões, minérios maciços e minérios fissurais, por digitalização de limites em perfis, interpolação de superfícies e conversão para o modelo de blocos do depósito; (c) construção de um modelo morfológico 3D de alta resolução para todo o depósito da variável ????(????) por Simulação Sequencial Direta (SSD), tendo como informação condicionante os histogramas regionais de ????(????) para minérios maciços e minérios fissurais e as soluções obtidas em (a) para ????(????) na localização das sondagens; (d) SSD dos teores relativos em cobre, zinco e prata; (e) discussão dos resultados e quantificação de recursos. Os resultados foram validados por comparação com os equivalentes obtidos numa estimação por krigagem normal dos teores em metal e mostraram ser da mesma ordem de grandeza. O conjunto de imagens simuladas das variáveis ????(????) e teores permite quantificar a incerteza do conhecimento do depósito relativamente à informação disponível.