964 resultados para Mg-doped ZnO quantum dots


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of Ge quantum dot arrays by deposition from a low-temperature plasma environment is investigated by kinetic Monte Carlo numerical simulation. It is demonstrated that balancing of the Ge influx from the plasma against surface diffusion provides an effective control of the surface processes and can result in the formation of very small densely packed quantum dots. In the supply-controlled mode, a continuous layer is formed which is then followed by the usual Stranski-Krastanow fragmentation with a nanocluster size of 10 nm. In the diffusion-controlled mode, with the oversupply relative to the surface diffusion rate, nanoclusters with a characteristic size of 3 nm are formed. Higher temperatures change the mode to supply controlled and thus encourage formation of the continuous layer that then fragments into an array of large size. The use of a high rate of deposition, easily accessible using plasma techniques, changes the mode to diffusion controlled and thus encourages formation of a dense array of small nanoislands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents an investigation of self-organizational and -assembly processes of nanostructure growth on surfaces exposed to low-temperature plasmas. We have considered three main growth stages-initial, or sub-monolayer growth stage, separate nanostructure growth stage, and array growth stages with the characteristic sizes of several nm, several tens of nm, and several hundreds of nm, respectively, and have demonstrated, by the experimental data and hybrid multiscale numerical simulations, that the plasma parameters can strongly influence the surface processes and hence the kinetics of self-organization and -assembly. Our results show that plasma-controlled self-organization is a promising way to assemble large regular arrays of nanostructures. © 2008 IUPAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unique features and benefits of the plasma-aided nanofabrication are considered by using the "plasma-building block" approach, which is based on plasma diagnostics and nanofilm characterization, cross-referenced by numerical simulation of generation and dynamics of building blocks in the gas phase, their interaction with nanostructured surfaces, and ab initio simulation of chemical structure of relevant nanoassemblies. The examples include carbon nanotip microemitter structures, semiconductor quantum dots and nanowires synthesized in the integrated plasma-aided nanofabrication facility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We outline a metal-free fabrication route of in-plane Ge nanowires on Ge(001) substrates. By positively exploiting the polishing-induced defects of standard-quality commercial Ge(001) wafers, micrometer-length wires are grown by physical vapor deposition in ultra-high-vacuum environment. The shape of the wires can be tailored by the epitaxial strain induced by subsequent Si deposition, determining a progressive transformation of the wires in SiGe faceted quantum dots. This shape transition is described by finite element simulations of continuous elasticity and gives hints on the equilibrium shape of nanocrystals in the presence of tensile epitaxial strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon carbide is one of the promising materials for the fabrication of various one- and two-dimensional nanostructures. In this chapter, we discuss experimental and theoretical studies of the plasma-enabled fabrication of silicon carbide quantum dots, nanowires, and nanorods. The discussed fabrication methods include plasma-assisted growth with and without anodic aluminium oxide membranes and with or without silane as a source of silicon. In the silane-free experiments, quartz was used as a source of silicon to synthesize the silicon carbide nanostructures in an environmentally friendly process. The mechanism of the formation of nanowires and nanorods is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing interest in nanoscience and nanotechnology has prompted intense investigations into appropriate fabrication techniques. Self-organized, bottom-up growth of nanomaterials using plasma nanofabrication techniques1–10 has proven to be one of the most promising approaches for the construction of precisely tailored nanostructures (i.e., quantum dots,11–13 nanotubes,14–17 nanowires,18–20 etc.) arrays. Thus the primary aim of this chapter is to show how plasmas may be used to achieve a high level of control during the self-organized growth of a range of nanomaterials, from zero-dimensional quantum dots (Section 15.2) to one- and two-dimensional nanomaterials (Section 15.3) to nanostructured films (Section 15.4)...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a method to perform in situ microrheological measurements on monolayers of soft materials undergoing viscoelastic transitions under compression. Using the combination of a Langmuir trough mounted on the inverted microscope stage of a laser scanning confocal microscope we track the motion of individual fluorescent quantum dots partly dispersed in monolayers spread at the air-water interface. From the calculated mean square displacement of the probe particles and extending a well established scheme of the generalized Stokes-Einstein relation in bulk to the interface we arrive at the viscoelastic modulus for the respective monolayers as a function of surface density. Measurements on monolayers of glassy as well as nonglassy polymers and a standard fatty acid clearly show sensitivity of our technique to subtle variations, in the viscoelastic properties of the highly confined materials under compression. Evidence for possible spatial variations of such viscoelastic properties at a given surface density for the fatty acid monolayer is also provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a method to perform in situ microrheological measurements on monolayers of soft materials undergoing viscoelastic transitions under compression. Using the combination of a Langmuir trough mounted on the inverted microscope stage of a laser scanning confocal microscope we track the motion of individual fluorescent quantum dots partly dispersed in monolayers spread at the air-water interface. From the calculated mean square displacement of the probe particles and extending a well established scheme of the generalized Stokes-Einstein relation in bulk to the interface we arrive at the viscoelastic modulus for the respective monolayers as a function of surface density. Measurements on monolayers of glassy as well as nonglassy polymers and a standard fatty acid clearly show sensitivity of our technique to subtle variations, in the viscoelastic properties of the highly confined materials under compression. Evidence for possible spatial variations of such viscoelastic properties at a given surface density for the fatty acid monolayer is also provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present results of photoluminescence spectroscopy and lifetime measurements on thin film hybrid arrays of semiconductor quantum dots and metal nanoparticles embedded in a block copolymer template. The intensity of emission as well as the measured lifetime would be controlled by varying the volume fraction and location of gold nanoparticles in the matrix. We demonstrate the ability to both enhance and quench the luminescence in the hybrids as compared to the quantum dot array films while simultaneously engineering large reduction in luminescence lifetime with incorporation of gold nanoparticles. (C) 2010 American Institute of Physics. [doi:10.1063/1.3483162].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes a facile, low-cost, solution-phase approach to the large-scale preparation of Hg1-xCdxTe nanostructures of different shapes such as nanorods, quantum dots, hexagonal cubes of different sizes and different compositions at a growth temperature of 180 degrees C using an air stable Te source by solvothermal technique. The XRD spectrum shows that the crystals are cubic in their basic structure and reveals the variation in lattice constant as a function of composition. The size and morphology of the products were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The formation of irregular shaped particles and few nano-rods in the present synthesis is attributed to the cetyl trimethylammonium bromide (CTAB). The room temperature FTIR absorption and PL studies for a compositon of x = 0.8 gives a band gap of 1.1 eV and a broad emission in NIR region (0.5-0.9 eV) with all bands attributed to surface defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report one-pot hydrothermal synthesis of nearly mono-disperse 3-mercaptopropionic acid capped water-soluble cadmium telluride (CdTe) quantum dots (QDs) using an air stable Te source. The optical and electrical characteristics were also studied here. It was shown that the hydrothermal synthesis could be tuned to synthesize nano structures of uniform size close to nanometers. The emissions of the CdTe QDs thus synthesized were in the range of 500-700 nm by varying the duration of synthesis. The full width at half maximum (FWHM) of the emission peaks is relatively narrow (40-90 nm), which indicates a nearly uniform distribution of QD size. The structural and optical properties of the QDs were characterized by transmission electron microscopy (TEM), photoluminescence (PL) and Ultraviolet-visible (UV-Vis) spectroscopy. The photoluminescence quenching of CdTe QDs in the presence of L-cysteine and DNA confirms its biocompatibility and its utility for biosensing applications. The room temperature current-voltage characteristics of QD film on ITO coated glass substrate show an electrically induced switching between states with high and low conductivities. The phenomenon is explained on the basis of charge confinement in quantum dots. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured GdxZn1-xO thin films with different Gd concentration from 0% to 10% deposited at 400 degrees C using the NSF technique. The films were characterized by structural, surface and optical properties, respectively. X-ray diffraction analysis shows that the Gd doped ZnO films have lattice parameters a = 3.2497 angstrom and c = 5.2018 angstrom with hexagonal structure and preferential orientation along (002) plane. The estimated values compare well with the standard values. When film thickness increases from 222 to 240 nm a high visible region transmittance (>70%) is observed. The optical band gap energy, optical constants (n and k), complex dielectric constants (epsilon(r), and epsilon(i)) and optical conductivities (sigma(r), and sigma(i)) were calculated from optical transmittance data. The optical band gap energy is 3.2 eV for pure ZnO film and 3.6 eV for Gd0.1Zn0.9-O film. The PL studies confirm the presence of a strong UV emission peak at 399 nm. Besides, the UV emission of ZnO films decreases with the increase of Gd doping concentration correspondingly the ultra-violet emission is replaced by blue and green emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effect of stress and interface defects on photo luminescence property of a silicon nano-crystal (Si-nc) embedded in amorphous silicon dioxide (a-SiO2) are studied in this paper using a self-consistent quantum-continuum based modeling framework. Si-ncs or quantum dots show photoluminescence at room temperature. Whether its origin is due to Si-nc/a-SiO2 interface defects or quantum confinement of carriers in Si-nc is still an outstanding question. Earlier reports have shown that stresses greater than 12 GPa change the indirect energy band gap structure of bulk Si to a direct energy band gap structure. Such stresses are observed very often in nanostructures and these stresses influence the carrier confinement energy significantly. Hence, it is important to determine the effect of stress in addition to the structure of interface defects on photoluminescence property of Si-nc. In the present work, first a Si-nc embedded in a-SiO2 is constructed using molecular dynamics simulation framework considering the actual conditions they are grown so that the interface and residual stress in the structure evolves naturally during formation. We observe that the structure thus created has an interface of about 1 nm thick consisting of 41.95% of defective states mostly Sin+ (n = 0 to 3) coordination states. Further, both the Si-nc core and the embedding matrix are observed to be under a compressive strain. This residual strain field is applied in an effective mass k.p Hamiltonian formulation to determine the energy states of the carriers. The photo luminescence property computed based on the carrier confinement energy and interface energy states associated with defects will be analysed in details in the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of CexZn1-xO thin films were deposited on glass substrates at 400 degrees C by nebulizer spray pyrolysis technique. Ce doping concentration (x) was varied from 0 to 10%, in steps of 2.5%. X-ray diffraction reveals that all the films have polycrystalline nature with hexagonal crystal structure and high preferential orientation along (002) plane. Optical parameters such as; transmittance, band gap energy, refractive index (n), extinction coefficient (k), complex dielectric constants (epsilon(r), epsilon(i)) and optical conductivity (sigma(r), sigma(i)) have been determined and discussed with respect to Ce concentration. All the films exhibit transmittance above 80% in the wavelength range from 330 to 2500 nm. Optical transmission measurements indicate the decrease of direct band gap energy from 3.26 to 3.12 eV with the increase of Ce concentration. Photoluminescence spectra show strong near band edge emission centered similar to 398 nm and green emission centered similar to 528 nm with excitation wavelength similar to 350 nm. High resolution scanning electron micrographs indicate the formation of vertical nano-rod like structures on the film surface with average diameter similar to 41 nm. Electrical properties of the Ce doped ZnO film have been studied using ac impedance spectroscopy in the frequency range from 100 Hz-1 MHz at different temperatures. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes the determination of the internal structure of heterogeneous nanoparticle systems including inverted core-shell (CdS core and CdSe shell) and alloyed (CdSeS) quantum dots using depth-resolved, variable-energy X-ray photoelectron spectroscopy (XPS). A unique feature of this work is the combination of photoelectron spectroscopy performed at lower X-ray energies (400-700 eV), to achieve surface sensitivity, with bulk sensitive measurements at high photon energies (>2000 eV), thereby providing detailed information about the whole nanoparticle structure with a great accuracy. The use of high photon energies furthermore allows us to investigate nanoparticles much larger than those studied thus far. This capability is a consequence of the much-increased mean free path of the photoelectron achieved at high excitation energies. Our results show that the actual structures of the synthesized nanoparticles are considerably different from the nominal, targeted structures, which can be post facto rationalized in terms of the reactivity of different constituents.