977 resultados para Marseille, Gulf of
Resumo:
A survey of the marine gastropod genus Conus Linnaeus was conducted along the TamilNadu Coast of India to explore the regional geographic distribution and diversity. The 60 species observed increased the number of Indian Conidae from 77 to 81. Conus imperialis Linne, C. mitratus Hwass in Bruguiere, C. striolatus Kiener and C. violaceus Gmelin are newly recorded from the study area. Conus amadis Gmelin was the most widely distributed species. The highest diversity (48 species) occurred in the Gulf of Mannar, followed by 22 species from northern, six from southern, and five from the Palk Bay regions. We suggest that the rich diversity recorded in the Gulf of Mannar reflects the physical conditions, microhabitats and required resources such as food and shelter that favour the occurrence of the large number of Conus species.
Resumo:
Modern-day weather forecasting is highly dependent on Numerical Weather Prediction (NWP) models as the main data source. The evolving state of the atmosphere with time can be numerically predicted by solving a set of hydrodynamic equations, if the initial state is known. However, such a modelling approach always contains approximations that by and large depend on the purpose of use and resolution of the models. Present-day NWP systems operate with horizontal model resolutions in the range from about 40 km to 10 km. Recently, the aim has been to reach operationally to scales of 1 4 km. This requires less approximations in the model equations, more complex treatment of physical processes and, furthermore, more computing power. This thesis concentrates on the physical parameterization methods used in high-resolution NWP models. The main emphasis is on the validation of the grid-size-dependent convection parameterization in the High Resolution Limited Area Model (HIRLAM) and on a comprehensive intercomparison of radiative-flux parameterizations. In addition, the problems related to wind prediction near the coastline are addressed with high-resolution meso-scale models. The grid-size-dependent convection parameterization is clearly beneficial for NWP models operating with a dense grid. Results show that the current convection scheme in HIRLAM is still applicable down to a 5.6 km grid size. However, with further improved model resolution, the tendency of the model to overestimate strong precipitation intensities increases in all the experiment runs. For the clear-sky longwave radiation parameterization, schemes used in NWP-models provide much better results in comparison with simple empirical schemes. On the other hand, for the shortwave part of the spectrum, the empirical schemes are more competitive for producing fairly accurate surface fluxes. Overall, even the complex radiation parameterization schemes used in NWP-models seem to be slightly too transparent for both long- and shortwave radiation in clear-sky conditions. For cloudy conditions, simple cloud correction functions are tested. In case of longwave radiation, the empirical cloud correction methods provide rather accurate results, whereas for shortwave radiation the benefit is only marginal. Idealised high-resolution two-dimensional meso-scale model experiments suggest that the reason for the observed formation of the afternoon low level jet (LLJ) over the Gulf of Finland is an inertial oscillation mechanism, when the large-scale flow is from the south-east or west directions. The LLJ is further enhanced by the sea-breeze circulation. A three-dimensional HIRLAM experiment, with a 7.7 km grid size, is able to generate a similar LLJ flow structure as suggested by the 2D-experiments and observations. It is also pointed out that improved model resolution does not necessary lead to better wind forecasts in the statistical sense. In nested systems, the quality of the large-scale host model is really important, especially if the inner meso-scale model domain is small.
Resumo:
This work focuses on the role of macroseismology in the assessment of seismicity and probabilistic seismic hazard in Northern Europe. The main type of data under consideration is a set of macroseismic observations available for a given earthquake. The macroseismic questionnaires used to collect earthquake observations from local residents since the late 1800s constitute a special part of the seismological heritage in the region. Information of the earthquakes felt on the coasts of the Gulf of Bothnia between 31 March and 2 April 1883 and on 28 July 1888 was retrieved from the contemporary Finnish and Swedish newspapers, while the earthquake of 4 November 1898 GMT is an example of an early systematic macroseismic survey in the region. A data set of more than 1200 macroseismic questionnaires is available for the earthquake in Central Finland on 16 November 1931. Basic macroseismic investigations including preparation of new intensity data point (IDP) maps were conducted for these earthquakes. Previously disregarded usable observations were found in the press. The improved collection of IDPs of the 1888 earthquake shows that this event was a rare occurrence in the area. In contrast to earlier notions it was felt on both sides of the Gulf of Bothnia. The data on the earthquake of 4 November 1898 GMT were augmented with historical background information discovered in various archives and libraries. This earthquake was of some concern to the authorities, because extra fire inspections were conducted in three towns at least, i.e. Tornio, Haparanda and Piteå, located in the centre of the area of perceptibility. This event posed the indirect hazard of fire, although its magnitude around 4.6 was minor on the global scale. The distribution of slightly damaging intensities was larger than previously outlined. This may have resulted from the amplification of the ground shaking in the soft soil of the coast and river valleys where most of the population was found. The large data set of the 1931 earthquake provided an opportunity to apply statistical methods and assess methodologies that can be used when dealing with macroseismic intensity. It was evaluated using correspondence analysis. Different approaches such as gridding were tested to estimate the macroseismic field from the intensity values distributed irregularly in space. In general, the characteristics of intensity warrant careful consideration. A more pervasive perception of intensity as an ordinal quantity affected by uncertainties is advocated. A parametric earthquake catalogue comprising entries from both the macroseismic and instrumental era was used for probabilistic seismic hazard assessment. The parametric-historic methodology was applied to estimate seismic hazard at a given site in Finland and to prepare a seismic hazard map for Northern Europe. The interpretation of these results is an important issue, because the recurrence times of damaging earthquakes may well exceed thousands of years in an intraplate setting such as Northern Europe. This application may therefore be seen as an example of short-term hazard assessment.
Resumo:
ABSTRACT The Baltic Sea is a vulnerable ecosystem currently undergoing a number of changes, both natural and human induced. The changes are likely to affect the species found on these shores, e.g. their distribution and interactions with other species. Blue mussels (Mytilus trossulus x Mytilus edulis) provide one of the main biogenic hard structures on the shallow shores of the Baltic Sea where they aggregate into dense beds and provide a number of resources for over 40 associated macrofaunal species, thus functioning as ecosystem engineers. The blue mussel, being a marine species, is highly likely to be affected by any changes in sea water salinity, circulation and/or water balance. These changes could trickle down also to affect the associated macrofaunal communities. The aims of this thesis were three-fold: first, I examined and described the macrofaunal communities found within blue mussel patches since the fauna associated with mussel patches had never been described in the study area prior to this thesis. Second, I explored how changes in mussel density, size as well as patch size and shape would affect the mussel communities. Finally, I tested how general landscape theories derived from terrestrial studies function in blue mussel systems. Theories included the structural heterogeneity hypothesis, species-area relationships, edge effects and patch isolation effects. The work shows that blue mussels in the northern Baltic Sea have an indisputable function as diversity hotspots and that the faunal assemblages found in mussel patches are extremely rich and unique. Further on, it shows that changes in mussel biomass, size, patch size and amount of edge have the potential to alter the faunal assemblages and diversity within patches. Finally, it shows that although some landscape theories, such as the structural heterogeneity hypothesis, seem to apply also in blue mussel communities, others cannot be directly applied due to the different prevailing conditions in the study system. This is a pioneering work looking at diversity shaping processes on the rocky shores of the Gulf of Finland, making up over 40% of the total water basin. A focus on niche construction, positive facilitation effects and ecosystem engineering could provide new insights and methods for conservation biology, but before this can be done, we need to fully understand the circumstances under which a species becomes an ecosystem engineer and recognize the systems in which it functions.
Resumo:
Estuaries have been suggested to have an important role in reducing the nitrogen load transported to the sea. We measured denitrification rates in six estuaries of the northern Baltic Sea. Four of them were river mouths in the Bothnian Bay (northern Gulf of Bothnia), and two were estuary bays, one in the Archipelago Sea (southern Gulf of Bothnia) and the other in the Gulf of Finland. Denitrification rates in the four river mouths varied between 330 and 905 mu mol N m(-2) d(-1). The estuary bays at the Archipelago Sea and the Gulf of Bothnia had denitrification rates from 90 mu mol N m(-2) d(-1) to 910 mu mol N m(-2) d(-1) and from 230 mu mol N m(-2) d(-1) to 320 mu mol N m(-2) d(-1), respectively. Denitrification removed 3.6-9.0% of the total nitrogen loading in the river mouths and in the estuary bay in the Gulf of Finland, where the residence times were short. In the estuary bay with a long residence time, in the Archipelago Sea, up to 4.5% of nitrate loading and 19% of nitrogen loading were removed before entering the sea. According to our results, the sediments of the fast-flowing rivers and them estuary areas with short residence times have a limited capacity to reduce the nitrogen load to the Baltic Sea.
Resumo:
The center of low pressure of a tropical disturbance which moved northward in the Gulf of Mexico, reached land between Panama City and Port St. Joe, Florida, on September 20, 1969. This system was nearly stationary for 48 hours producing heavy rainfall in the Quincy-Havana area, 70-80 miles northeast of the center. Rainfall associated with the tropical disturbance exceeded 20 inches over a part of Gadsden County, Florida, during September 20 through 23, 1969, and the maximum rainfall of record occurred at Quincy with 10.87 inches during a 6-hour period on September 21. The 48-hour maximum of 17.71 inches exceeded the 1 in 100-year probability of 16 inches for a 7-day period. The previous maximum rainfall of record at Quincy (more than 12 inches) was on September 14-15, 1924. The characteristics of this historical storm were similar in path and effect to the September 1969 tropical disturbance. Peak runoff from a 1.4-square mile area near Midway, Florida, was 1,540 cfs (cubic feet per second) per square mile. A peak discharge of 45,600 cfs on September 22 at the gaging station on the Little River near Quincy exceeded the previous peak of 25,400 cfs which occurred on December 4, 1964. The peak discharge of 89,400 cfs at Ochlockonee River near Bloxham exceeded the April 1948 peak of 50,200 cfs, which was the previous maximum of record, by 1.8 times. Many flood-measurement sites had peak discharges in excess of that of a 50-year flood. Nearly $200,000 was spent on emergency repairs to roads. An additional $520,000 in contractual work was required to replace four bridges that were destroyed. Agricultural losses were estimated at $1,000,000. (44 page document)
Resumo:
EXECUTIVE SUMMARY 1. DECADAL-SCALE CLIMATE EVENTS 1.1 Introduction 1.2 Basin-scale Patterns 1.3 Long Time Series in the North Pacific 1.4 Decadal Climate Variability in Ecological Regions of the North Pacific 1.5 Mechanisms 1.6 References 2. COHERENT REGIONAL RESPONSES 2.1 Introduction 2.2 Central North Pacific (CNP) 2.3 California Current System (CCS) 2.4 Gulf of Alaska (GOA) 2.5 Bering Sea and Aleutian Islands 2.6 Western North Pacific (WNP) 2.7 Coherence in Regional Responses to the 1998 Regime Shift 2.8 Climate Indicators for Detecting Regime Shifts 2.9 References 3. IMPLICATIONS FOR THE MANAGEMENT OF MARINE RESOURCES 3.1 Introduction 3.2 Response Time of Biota to Regime Shifts 3.3 Response Time of Management to Regime Shifts 3.4 Provision of Stock Assessment Advice 3.5 Decision Rules 3.6 References 4. SUGGESTED LITERATURE 4.1 Climate Regimes 4.2 Impacts on Lower Trophic Levels 4.3 Impacts on Fish and Higher Trophic Levels 4.4 Impacts on Ecosystems and Possible Mechanisms 4.5 Regimes and Fisheries Management APPENDIX 1: RECENT ECOSYSTEM CHANGES IN THE CENTRAL NORTH PACIFIC A1.1 Introduction A1.2 Physical Oceanography A1.3 Lower Trophic Levels A1.4 Invertebrates A1.5 Fishes A1.6 References APPENDIX 2: RECENT ECOSYSTEM CHANGES IN THE CALIFORNIA CURRENT SYSTEM A2.1 Introduction A2.2 Physical Oceanography A2.3 Lower Trophic Levels A2.4 Invertebrates A2.5 Fishes A2.6 References APPENDIX 3: RECENT ECOSYSTEM CHANGES IN THE GULF OF ALASKA A3.1 Introduction A3.2 Physical Oceanography A3.3 Lower Trophic Levels A3.4 Invertebrates A3.5 Fishes A3.6 Higher Trophic Levels A3.7 Coherence in Gulf of Alaska Fish A3.8 Combined Standardized Indices of Recruitment and Survival Rate A3.9 References APPENDIX 4: RECENT ECOSYSTEM CHANGES IN THE BERING SEA AND ALEUTIAN ISLANDS A4.1 Introduction A4.2 Bering Sea Environmental Variables and Physical Oceanography A4.3 Bering Sea Lower Trophic Levels A4.4 Bering Sea Invertebrates A4.5 Bering Sea Fishes A4.6 Bering Sea Higher Trophic Levels A4.7 Coherence in Bering Sea Fish Responses A4.8 Combined Standardized Indices of Bering Fish Recruitment and Survival Rate A4.9 Aleutian Islands A4.10 References APPENDIX 5: RECENT ECOSYSTEM CHANGES IN THE WESTERN NORTH PACIFIC A5.1 Introduction A5.2 Sea of Okhotsk A5.3 Tsushima Current Region and Kuroshio/Oyashio Current Region A5.4 Bohai Sea, Yellow Sea, and East China Sea A5.5 References (168 page document)
Resumo:
Table of Contents [pdf, 0.22 Mb] Executive Summary [pdf, 0.31 Mb] Report of the 2001 BASS/MODEL Workshop [pdf, 0.65 Mb] To review ecosystem models for the subarctic gyres Report of the 2001 MONITOR Workshop [pdf, 0.7 Mb] To review ecosystem models for the subarctic gyres Workshop presentations: Sonia D. Batten PICES Continuous Plankton Recorder pilot project Phillip R. Mundy GEM (Exxon Valdez Oil Spill Trustee Council`s "Gulf Ecosystem Monitoring" initiative) and U.S. GOOS plans in the North Pacific Ron McLaren and Brian O`Donnell A proposal for a North Pacific Action group of the international Data Buoy Cooperation Panel Gilberto Gaxiola-Castrol and Sila Najera-Martinez The Mexican oceanographic North Pacific program: IMECOCAL Sydney Levitus Building global ocean profile and plankton databases for scientific research Report of the 2001 REX Workshop [pdf, 1.73 Mb] On temporal variations in size-at-age for fish species in coastal areas around the Pacific Rim Workshop presentations: Brian J. Pyper, Randall M. Peterman, Michael F. Lapointe and Carl J. Walters [pdf, 0.33 Mb] Spatial patterns of covariation in size-at-age of British Columbia and Alaska sockeye salmon stocks and effects of abundance and ocean temperature R. Bruce MacFarlane, Steven Ralston, Chantell Royer and Elizabeth C. Norton [pdf, 0.4 Mb] Influences of the 1997-1998 El Niño and 1999 La Niña on juvenile Chinook salmon in the Gulf of the Farallones Olga S. Temnykh and Sergey L. Marchenko [pdf, 0.5 Mb] Variability of the pink salmon sizes in relation with abundance of Okhotsk Sea stocks Ludmila A. Chernoivanova, Alexander N. Vdoven and D.V. Antonenko [pdf, 0.3 Mb] The characteristic growth rate of herring in Peter the Great Bay (Japan/East Sea) Nikolay I. Naumenko [pdf, 0.5 Mb] Temporal variations in size-at-age of the western Bering Sea herring Evelyn D. Brown [pdf, 0.45 Mb] Effects of climate on Pacific herring, Clupea pallasii, in the northern Gulf of Alaska and Prince William Sound, Alaska Jake Schweigert, Fritz Funk, Ken Oda and Tom Moore [pdf, 0.6 Mb] Herring size-at-age variation in the North Pacific Ron W. Tanasichuk [pdf, 0.3 Mb] Implications of variation in euphausiid productivity for the growth, production and resilience of Pacific herring (Clupea pallasi) from the southwest coast of Vancouver Island Chikako Watanabe, Ahihiko Yatsu and Yoshiro Watanabe [pdf, 0.3 Mb] Changes in growth with fluctuation of chub mackerel abundance in the Pacific waters off central Japan from 1970 to 1997 Yoshiro Watanabe, Yoshiaki Hiyama, Chikako Watanabe and Shiro Takayana [pdf, 0.35 Mb] Inter-decadal fluctuations in length-at-age of Hokkaido-Sakhalin herring and Japanese sardine in the Sea of Japan Pavel A. Balykin and Alexander V. Buslov [pdf, 0.4 Mb] Long-term variability in length of walley pollock in the western Bering Sea and east Kamchtka Alexander A. Bonk [pdf, 0.4 Mb] Effect of population abundance increase on herring distribution in the western Bering Sea Sergey N. Tarasyuk [pdf, 0.4 Mb] Survival of yellowfin sole (Limanda aspera Pallas) in the northern part of the Tatar Strait (Sea of Japan) during the second half of the 20th century Report of the 2002 MODEL/REX Workshop [pdf, 1.2 Mb] To develop a marine ecosystem model of the North Pacific Ocean including pelagic fishes Summary and Overview [pdf, 0.4 Mb] Workshop presentations: Bernard A. Megrey, Kenny Rose, Francisco E. Werner, Robert A. Klumb and Douglas E. Hay [pdf, 0.47 Mb] A generalized fish bioenergetics/biomass model with an application to Pacific herring Robert A. Klumb [pdf, 0.34 Mb] Review of Clupeid biology with emphasis on energetics Douglas E. Hay [pdf, 0.47 Mb] Reflections of factors affecting size-at-age and strong year classes of herring in the North Pacific Shin-ichi Ito, Yutaka Kurita, Yoshioki Oozeki, Satoshi Suyama, Hiroya Sugisaki and Yongjin Tian [pdf, 0.34 Mb] Review for Pacific saury (Cololabis saira) study under the VENFISH project lexander V. Leonov and Gennady A. Kantakov [pdf, 0.34 Mb] Formalization of interactions between chemical and biological compartments in the mathematical model describing the transformation of nitrogen, phosphorus, silicon and carbon compounds Herring group report and model results [pdf, 0.34 Mb] Saury group report and model results [pdf, 0.46 Mb] Model experiments and hypotheses Recommendations [pdf, 0.4 Mb] Achievements and future steps Acknowledgements [pdf, 0.29 Mb] References [pdf, 0.32 Mb] Appendix 1. List of Participants [pdf, 0.32 Mb] Appendices 2-5. FORTRAN codes [pdf, 0.4 Mb] (Document pdf contains 182 pages)
Resumo:
Preface [pdf, 0.01 Mb] James J. O'Brien The big picture - The ENSO of 1997-98 [pdf, 0.01 Mb] James E. Overland, Nicholas A. Bond & Jennifer Miletta Adams Atmospheric anomalies in 1997: Links to ENSO? [pdf, 0.54 Mb] Vladimir I. Ponomarev, Olga Trusenkova, Serge Trousenkov, Dmitry Kaplunenko, Elena Ustinova & Antonina Polyakova The ENSO signal in the northwest Pacific [pdf, 0.47 Mb] Robert L. Smith, A. Huyer, P.M. Kosro & J.A. Barth Observations of El Niño off Oregon: July 1997 to present (October 1998) [pdf, 1.31 Mb] Patrica A. Wheeler & Jon Hill Biological effects of the 1997-1998 El Niño event off Oregon: Nutrient and chlorophyll distributions [pdf, 1.13 Mb] William T. Peterson Hydrography and zooplankton off the central Oregon coast during the 1997-1998 El Niño event [pdf, 0.26 Mb] William Crawford, Josef Cherniawsky, Michael Foreman & Peter Chandler El Niño sea level signal along the west coast of Canada [pdf, 1.25 Mb] Howard J. Freeland & Rick Thomson The El Niño signal along the west coast of Canada - temperature, salinity and velocity [pdf, 0.49 Mb] Frank A. Whitney, David L. Mackas, David W. Welch & Marie Robert Impact of the 1990s El Niños on nutrient supply and productivity of Gulf of Alaska waters [pdf, 0.06 Mb] Craig McNeil, David Farmer & Mark Trevorrow Dissolved gas measurements at Stn. P4 during the 97-98 El Niño [pdf, 0.13 Mb] Kristen L.D. Milligan, Colin D. Levings & Robert E. DeWreede Data compilation and preliminary time series analysis of abundance of a dominant intertidal kelp species in relation to the 1997/1998 El Niño event [pdf, 0.05 Mb] S.M. McKinnell, C.C. Wood, M. Lapointe, J.C. Woodey, K.E. Kostow, J. Nelson & K.D. Hyatt Reviewing the evidence that adult sockeye salmon strayed from the Fraser River and spawned in other rivers in 1997 [pdf,0.03 Mb] G.A. McFarlane & R.J. Beamish Sardines return to British Columbia waters [pdf, 0.34 Mb] Ken H. Morgan Impact of the 1997/98 El Niño on seabirds of the northeast Pacific [pdf, 0.06 Mb] Thomas C. Royer & Thomas Weingartner Coastal hydrographic responses in the northern Gulf of Alaska to the 1997-98 ENSO event [pdf, 0.76 Mb] John F. Piatt, Gary Drew, Thomas Van Pelt, Alisa Abookire, April Nielsen, Mike Shultz & Alexander Kitaysky Biological effects of the 1997/98 ENSO in Cook Inlet, Alaska [pdf, 0.22 Mb] H.J. Niebauer The 1997-98 El Niño in the Bering Sea as compared with previous ENSO events and the "regime shift" of the late 1970s [pdf, 0.10 Mb] A.S. Krovnin, G.P. Nanyushin, M.Yu. Kruzhalov, G.V. Khen, M.A. Bogdanov, E.I. Ustinova, V.V. Maslennikov, A.M. Orlov, B.N. Kotenev, V.V. Bulanov & G.P. Muriy The state of the Far East seas during the 1997/98 El Niño event [pdf, 0.15 Mb] Stacy Smith & Susan Henrichs Phytoplankton collected by a time-series sediment trap deployed in the southeast Bering Sea during 1997 [pdf, 0.21 Mb] Cynthia T. Tynan Redistributions of cetaceans in the southeast Bering Sea relative to anomalous oceanographic conditions during the 1997 El Niño [pdf, 0.02 Mb] Akihiko Yatsu, Junta Mori, Hiroyuki Tanaka, Tomowo Watanabe, Kazuya Nagasawa, Yikimasa Ishida, Toshimi Meguro, Yoshihiko Kamei & Yasunori Sakurai Stock abundance and size compositions of the neon flying squid in the central North Pacific Ocean during 1979-1998 [pdf, 0.11 Mb] O.B. Feschenko A new point of view concerning the El Niño mechanism [pdf, 0.01 Mb] Nathan Mantua 97/98 Ocean climate variability in the northeast Pacific: How much blame does El Niño deserve? [pdf, 0.01 Mb] Vadim P. Pavlychev Sharp changes of hydrometeorological conditions in the northwestern Pacific during the 1997/1998 El Niño event [pdf, 0.01 Mb] Jingyi Wang Predictability and forecast verification of El Niño events [pdf, 0.01 Mb] (Document contains 110 pages)
Resumo:
Key Messages [pdf, 2.5 Mb] Climate Information Gaps Ocean Productivity Information gaps Living Marine Resources Information gaps Climate [pdf, 1.8 Mb] Productivity [pdf, 5.2 Mb] Nutrients Phytoplankton Zooplankton Living Resources [pdf, 10 Mb] Subarctic coastal systems Central oceanic gyres Temperate coastal and oceanic systems Marine mammals The Human Population [pdf, 5 Mb] Contaminants and Habitat Modifications Aquaculture Knowledge Gaps Glossary Ocean and Climate Changes [pdf, 4.1Mb] Highlights Introduction Atmospheric Indices Change in 1998/99 Comparison of Atmospheric Indices Authorship Yellow Sea / East China Sea [pdf, 2.3 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Benthos Fish and invertebrates Marine birds and mammals Issues Critical factors causing change Authorship Japan/East Sea [pdf, 3.3 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Critical factors causing change Issues Authorship Okhotsk Sea [pdf, 1.7 Mb] Background Status and Trends Climate Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Issues Critical factors causing change Authorship Oyashio / Kuroshio [pdf, 4.5 Mb] Highlights Background Status and Trends Hydrography Plankton Fish and Invertebrates Marine Birds and Mammals Issues Authorship Western Subarctic Gyre [pdf, 4.5 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Issues Authorship Bering Sea [pdf, 2.2 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Critical Factors Causing Change Issues Authorship Gulf of Alaska [pdf, 2.6 Mb] Highlights Background Status and trends Hydrography Chemistry Plankton Fish and Invertebrates Marine birds and mammals Critical factors causing change Issues Authorship California Current [pdf, 2.7 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Critical Factors Causing Change Issues Authorship Gulf of California [pdf, 1.7 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fisheries Marine Birds and Mammals Critical Factors Causing Change Issues Authorship Transition Zone [pdf, 2.5 Mb] Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Issues Authorship Tuna [pdf, 1.5 Mb] Highlights Background Pacific bluefin tuna Albacore tuna Status and trends Ecosystem model and climate forcing Authorship Pacific halibut [pdf, 1.1 Mb] Background The Fishery Climate Influences Authorship Pacific salmon [Updated, pdf, 0.4 Mb] Background Status and Trends Washington, Oregon, and California British Columbia Southeast Alaska Central Alaska Western Alaska Russia Japan Authorship References [pdf, 0.5 Mb]
Resumo:
Foreword [pdf, < 0.1 MB] Acknowledgements PHASE 1 [pdf, 0.2 MB] Summary of the PICES/NPRB Workshop on Forecasting Climate Impacts on Future Production of Commercially Exploited Fish and Shellfish (July 19–20, 2007, Seattle, U.S.A.) Background Links to Other Programs Workshop Format Session I. Status of climate change scenarios in the PICES region Session II. What are the expected impacts of climate change on regional oceanography and what are some scenarios for these drivers for the next 10 years? Session III. Recruitment forecasting Session IV. What models are out there? How is climate linked to the model? Session V. Assumptions regarding future fishing scenarios and enhancement activities Session VI Where do we go from here? References Appendix 1.1 List of Participants PHASE 2 [pdf, 0.7 MB] Summary of the PICES/NPRB Workshop on Forecasting Climate Impacts on Future Production of Commercially Exploited Fish and Shellfish (October 30, 2007, Victoria, Canada) Background Workshop Agenda Forecast Feasibility Format of Information Modeling Approaches Coupled bio-physical models Stock assessment projection models Comparative approaches Similarities in Data Requests Opportunities for Coordination with Other PICES Groups and International Efforts BACKGROUND REPORTS PREPARED FOR THE PHASE 2 WORKSHOP Northern California Current (U.S.) groundfish production by Melissa Haltuch Changes in sablefish (Anoplopoma fimbria) recruitment in relation to oceanographic conditions by Michael J. Schirripa Northern California Current (British Columbia) Pacific cod (Gadus macrocephalus) production by Caihong Fu and Richard Beamish Northern California Current (British Columbia) sablefish (Anoplopoma fimbria) production by Richard Beamish Northern California Current (British Columbia) pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon production by Richard Beamish Northern California Current (British Columbia) ocean shrimp (Pandalus jordani) production by Caihong Fu Alaska salmon production by Anne Hollowed U.S. walleye pollock (Theragra chalcogramma) production in the eastern Bering Sea and Gulf of Alaska by Kevin Bailey and Anne Hollowed U.S. groundfish production in the eastern Bering Sea by Tom Wilderbuer U.S. crab production in the eastern Bering Sea by Gordon H. Kruse Forecasting Japanese commercially exploited species by Shin-ichi Ito, Kazuaki Tadokoro and Yasuhiro Yamanka Russian fish production in the Japan/East Sea by Yury Zuenko, Vladimir Nuzhdin and Natalia Dolganova Chum salmon (Oncorhynchus keta) production in Korea by Sukyung Kang, Suam Kim and Hyunju Seo Jack mackerel (Trachurus japonicus) production in Korea by Jae Bong Lee and Chang-Ik Zhang Chub mackerel (Scomber japonicus) production in Korea by Jae Bong Lee, Sukyung Kang, Suam Kim, Chang-Ik Zhang and Jin Yeong Kim References Appendix 2.1 List of Participants PHASE 3 [pdf, < 0.1 MB] Summary of the PICES Workshop on Linking Global Climate Model Output to (a) Trends in Commercial Species Productivity and (b) Changes in Broader Biological Communities in the World’s Oceans (May 18, 2008, Gijón, Spain) Appendix 3.1 List of Participants Appendix 3.2 Workshop Agenda (Document contains 101 pages)
Resumo:
The family Priacanthidae contains four genera and four species that occur in the western central North Atlantic (Starnes, 1988). Pristigenys alta is distributed in the Caribbean, Gulf of Mexico and along the east coast of North America. Although juveniles have been reported from as far north as southern New England waters, adults are not reported north of Cape Hatteras, NC. Priacanthus arenatus is distributed in tropical and tropically influenced areas of the western central North Atlantic in insular and continental shelf waters. Adult P. arenatus are distributed north to North Carolina and Bermuda, juveniles have been collected as far north as Nova Scotia. Cookeolus japonicus and Heteropriacanthus cruentatus are circumglobally distributed species and are both common in insular habitats. In the western central North Atlantic, C. japonicus ranges from New Jersey to Argentina; H. cruentatus from New Jersey and northern Gulf of Mexico to southern Brazil (Starnes, 1988). (PDF contains 6 pages)
Resumo:
Ichthyoplankton was sampled at 14 stations with 60 cm bongo nets fitted with 0.333 mm mesh in basins throughout Florida Bay in 1994-1995. In addition, I compared collections made using an epibenthic sled to those made with standard ichthyoplankton bongo nets at four stations during July 1997-November,1999 to determine ifthe two types of gear are complementary. In 1994-1995, in descending order of abundance, Clupeiformes, Gobiidae, Callionymidae, Sciaenidae, Labrisomidae, Soleidae and Blenniidae dominated the ichthyoplankton. Densities of clupeiforms were generally very high (> 100 larvae 100 m-3) or high (10.0 - 99.9 larvae 100 m-3). Gobiid larvae were ubiquitous with highest densities occurring in waters in close proximity to the Gulf of Mexico (109.7 larvae 100 m-3), lowest in two ofthree eastern Florida Bay stations (<1.0 larva 100 m-3). Spotted seatrout, Cynoscion nebulosus, dominated larval sciaenid collections and the only other sciaenid identified to species was the sand seatrout, Cynoscion arenarius. Taxa differed markedly between collections taken by epibenthic sled and standard ichthyoplankton bongo nets. Taxa collected with standard ichthyoplankton gear were those that spawn in Florida Bay and have pelagic larvae (i.e., engraulids and gobiids). Taxa collected with the sled were small resident species that have benthic larvae (i.e., syngnathids and cyprinodonts) or taxa that spawn outside the bay, but use the bay as a nursery area (i.e., gerreids and haemulids). Recently-settled red drum, Sciaenops ocellatus, were collected with the epibenthic sled in November 1999, although juveniles of this important gamefish are rare in the bay.
Resumo:
Executive Summary: The western National Coastal Assessment (NCA-West) program of EPA, in conjunction with the NOAA National Ocean Service (NOS), conducted an assessment of the status of ecological condition of soft sediment habitats and overlying waters along the western U.S. continental shelf, between the target depths of 30 and 120 m, during June 2003. NCA-West and NOAA/NOS partnered with the West Coast states (Washington (WA), Oregon (OR), and California (CA)), and the Southern California Coastal Water Research Project (SCCWRP) Bight ’03 program to conduct the survey. A total of 257 stations were sampled from Cape Flattery, WA to the Mexican border using standard methods and indicators applied in previous coastal NCA projects. A key study feature was the incorporation of a stratified-random sampling design with stations stratified by state and National Marine Sanctuary (NMS) status. Each of the three states was represented by at least 50 random stations. There also were a total of 84 random stations located within NOAA’s five NMSs along the West Coast including the Olympic Coast NMS (OCNMS), Cordell Bank NMS (CBNMS), Gulf of Farallones NMS (GFNMS), Monterey Bay NMS (MBNMS), and Channel Islands NMS (CINMS). Collection of flatfish via hook-and-line for fish-tissue contaminant analysis was successful at 50 EMAP/NCA-West stations. Through a collaboration developed with the FRAM Division of the Northwest Fisheries Science Center, fish from an additional 63 stations in the same region and depth range were also analyzed for fish-tissue contaminants. Bottom depth throughout the region ranged from 28 m to 125 m for most stations. Two slightly deeper stations from the Southern California Bight (SCB) (131, 134 m) were included in the data set. About 44% of the survey area had sediments composed of sands (< 20% silt-clay), about 47% was composed of intermediate muddy sands (20-80% silt-clay), and about 9% was composed of muds (> 80% silt-clay). The majority of the survey area (97%) had relatively low percent total organic carbon (TOC) levels of < 2%, while a small portion (< 1%) had high TOC levels (> 5%), in a range potentially harmful to benthic fauna. Salinity of surface waters for 92% of the survey area were > 31 psu, with most stations < 31 psu associated with the Columbia River plume. Bottom salinities ranged only between 31.6 and 34.4 psu. There was virtually no difference in mean bottom salinities among states or between NMS and non-NMS stations. Temperatures of surface water (range 8.5 -19.9 °C) and bottom water (range 5.8 -14.7 °C) averaged several degrees higher in CA in comparison to WA and OR. The Δσt index of watercolumn stratification indicated that about 31% of the survey area had strong vertical stratification of the water column. The index was greatest for waters off WA and lowest for CA waters. Only about 2.6 % of the survey area had surface dissolved oxygen (DO) concentrations ≤ 4.8 mg/L, and there were no values below the lower threshold (2.3 mg/L) considered harmful to the survival and growth of marine animals. Surface DO concentrations were higher in WA and OR waters than in CA, and higher in the OC NMS than in the CA sanctuaries. An estimated 94.3% of the area had bottom-water DO concentrations ≤ 4.8 mg/L and 6.6% had concentrations ≤ 2.3 mg/L. The high prevalence of DO from 2.3 to 4.8 mg/L (85% of survey area) is believed to be associated with the upwelling of naturally low DO water across the West Coast shelf. Mean TSS and transmissivity in surface waters (excluding OR due to sample problems) were slightly higher and lower, respectively, for stations in WA than for those in CA. There was little difference in mean TSS or transmissivity between NMS and non-NMS locations. Mean transmissivity in bottom waters, though higher in comparison to surface waters, showed little difference among geographic regions or between NMS and non-NMS locations. Concentrations of nitrate + nitrite, ammonium, total dissolved inorganic nitrogen (DIN) and orthophosphate (P) in surface waters tended to be highest in CA compared to WA and OR, and higher in the CA NMS stations compared to CA non-sanctuary stations. Measurements of silicate in surface waters were limited to WA and CA (exclusive of the SCB) and showed that concentrations were similar between the two states and approximately twice as high in CA sanctuaries compared to OCNMS or nonsanctuary locations in either state. The elevated nutrient concentrations observed at CA NMS stations are consistent with the presence of strong upwelling at these sites at the time of sampling. Approximately 93% of the area had DIN/P values ≤ 16, indicative of nitrogen limitation. Mean DIN/P ratios were similar among the three states, although the mean for the OCNMS was less than half that of the CA sanctuaries or nonsanctuary locations. Concentrations of chlorophyll a in surface waters ranged from 0 to 28 μg L-1, with 50% of the area having values < 3.9 μg L-1 and 10% having values > 14.5 μg L-1. The mean concentration of chlorophyll a for CA was less than half that of WA and OR locations, and concentrations were lowest in non-sanctuary sites in CA and highest at the OCNMS. Shelf sediments throughout the survey area were relatively uncontaminated with the exception of a group of stations within the SCB. Overall, about 99% of the total survey area was rated in good condition (<5 chemicals measured above corresponding effect range low (ERL) concentrations). Only the pesticides 4,4′-DDE and total DDT exceeded corresponding effect range-median (ERM) values, all at stations in CA near Los Angeles. Ten other contaminants including seven metals (As, Cd, Cr, Cu, Hg, Ag, Zn), 2-methylnaphthalene, low molecular weight PAHs, and total PCBs exceeded corresponding ERLs. The most prevalent in terms of area were chromium (31%), arsenic (8%), 2-methylnaphthalene (6%), cadmium (5%), and mercury (4%). The chromium contamination may be related to natural background sources common to the region. The 2-methylnaphthalene exceedances were conspicuously grouped around the CINMS. The mercury exceedances were all at non-sanctuary sites in CA, particularly in the Los Angeles area. Concentrations of cadmium in fish tissues exceeded the lower end of EPA’s non-cancer, human-health-risk range at nine of 50 EMAP/NCA-West and nine of 60 FRAM groundfish-survey stations, including a total of seven NMS stations in CA and two in the OCNMS. The human-health guidelines for all other contaminants were only exceeded for total PCBs at one station located in WA near the mouth of the Columbia River. Benthic species richness was relatively high in these offshore assemblages, ranging from 19 to 190 taxa per 0.1-m2 grab and averaging 79 taxa/grab. The high species richness was reflected over large areas of the shelf and was nearly three times greater than levels observed in estuarine samples along the West Coast (e.g NCA-West estuarine mean of 26 taxa/grab). Mean species richness was highest off CA (94 taxa/grab) and lower in OR and WA (55 and 56 taxa/grab, respectively). Mean species richness was very similar between sanctuary vs. non-sanctuary stations for both the CA and OR/WA regions. Mean diversity index H′ was highest in CA (5.36) and lowest in WA (4.27). There were no major differences in mean H′ between sanctuary vs. nonsanctuary stations for both the CA and OR/WA regions. A total of 1,482 taxa (1,108 to species) and 99,135 individuals were identified region-wide. Polychaetes, crustaceans and molluscs were the dominant taxa, both by percent abundance (59%, 17%, 12% respectively) and percent species (44%, 25%, 17%, respectively). There were no major differences in the percent composition of benthic communities among states or between NMSs and corresponding non-sanctuary sites. Densities averaged 3,788 m-2, about 30% of the average density for West Coast estuaries. Mean density of benthic fauna in the present offshore survey, averaged by state, was highest in CA (4,351 m-2) and lowest in OR (2,310 m-2). Mean densities were slightly higher at NMS stations vs. non-sanctuary stations for both the CA and OR/WA regions. The 10 most abundant taxa were the polychaetes Mediomastus spp., Magelona longicornis, Spiophanes berkeleyorum, Spiophanes bombyx, Spiophanes duplex, and Prionospio jubata; the bivalve Axinopsida serricata, the ophiuroid Amphiodia urtica, the decapod Pinnixa occidentalis, and the ostracod Euphilomedes carcharodonta. Mediomastus spp. and A. serricata were the two most abundant taxa overall. Although many of these taxa have broad geographic distributions throughout the region, the same species were not ranked among the 10 most abundant taxa consistently across states. The closest similarities among states were between OR and WA. At least half of the 10 most abundant taxa in NMSs were also dominant in corresponding nonsanctuary waters. Many of the abundant benthic species have wide latitudinal distributions along the West Coast shelf, with some species ranging from southern CA into the Gulf of Alaska or even the Aleutians. Of the 39 taxa on the list of 50 most abundant taxa that could be identified to species level, 85% have been reported at least once from estuaries of CA, OR, or WA exclusive of Puget Sound. Such broad latitudinal and estuarine distributions are suggestive of wide habitat tolerances. Thirteen (1.2%) of the 1,108 identified species are nonindigenous, with another 121 species classified as cryptogenic (of uncertain origin), and 208 species unclassified with respect to potential invasiveness. Despite uncertainties of classification, the number and densities of nonindigenous species appear to be much lower on the shelf than in the estuarine ecosystems of the Pacific Coast. Spionid polychaetes and the ampharetid polychaete Anobothrus gracilis were a major component of the nonindigenous species collected on the shelf. NOAA’s five NMSs along the West Coast of the U.S. appeared to be in good ecological condition, based on the measured indicators, with no evidence of major anthropogenic impacts or unusual environmental qualities compared to nearby nonsanctuary waters. Benthic communities in sanctuaries resembled those in corresponding non-sanctuary waters, with similarly high levels of species richness and diversity and low incidence of nonindigenous species. Most oceanographic features were also similar between sanctuary and non-sanctuary locations. Exceptions (e.g., higher concentrations of some nutrients in sanctuaries along the CA coast) appeared to be attributable to natural upwelling events in the area at the time of sampling. In addition, sediments within the sanctuaries were relatively uncontaminated, with none of the samples having any measured chemical in excess of ERM values. The ERL value for chromium was exceeded in sediments at the OCNMS, but at a much lower percentage of stations (four of 30) compared to WA and OR non-sanctuary areas (31 of 70 stations). ERL values were exceeded for arsenic, cadmium, chromium, 2- methylnaphthalene, low molecular weight PAHs, total DDT, and 4,4′-DDE at multiple sites within the CINMS. However, cases where total DDT, 4,4′-DDE, and chromium exceeded the ERL values were notably less prevalent at CINMS than in non-sanctuary waters of CA. In contrast, 2-methylnaphthalene above the ERL was much more prevalent in sediments at the CINMS compared to non-sanctuary waters off the coast of CA. While there are natural background sources of PAHs from oil seeps throughout the SCB, this does not explain the higher incidence of 2-methylnaphthalene contamination around CINMS. Two stations in CINMS also had levels of TOC (> 5%) potentially harmful to benthic fauna, though none of these sites exhibited symptoms of impaired benthic condition. This study showed no major evidence of extensive biological impacts linked to measured stressors. There were only two stations, both in CA, where low numbers of benthic species, diversity, or total faunal abundance co-occurred with high sediment contamination or low DO in bottom water. Such general lack of concordance suggests that these offshore waters are currently in good condition, with the lower-end values of the various biological attributes representing parts of a normal reference range controlled by natural factors. Results of multiple linear regression, performed using full model procedures to test for effects of combined abiotic environmental factors, suggested that latitude and depth had significant influences on benthic variables regionwide. Latitude had a significant inverse influence on all three of the above benthic variables, i.e. with values increasing as latitude decreased (p< 0.01), while depth had a significant direct influence on diversity (p < 0.001) and inverse effect on density (p <0.01). None of these variables varied significantly in relation to sediment % fines (at p< 0.1), although in general there was a tendency for muddier sediments (higher % fines) to have lower species richness and diversity and higher densities than coarser sediments. Alternatively, it is possible that for some of these sites the lower values of benthic variables reflect symptoms of disturbance induced by other unmeasured stressors. The indicators in this study included measures of stressors (e.g., chemical contaminants, eutrophication) that are often associated with adverse biological impacts in shallower estuarine and inland ecosystems. However, there may be other sources of humaninduced stress in these offshore systems (e.g., bottom trawling) that pose greater risks to ambient living resources and which have not been captured. Future monitoring efforts in these offshore areas should include indicators of such alternative sources of disturbance. (137pp.) (PDF contains 167 pages)
Resumo:
Three of California’s four National Marine Sanctuaries, Cordell Bank, Gulf of the Farallones, and Monterey Bay, are currently undergoing a comprehensive management plan review. As part of this review, NOAA’s National Marine Sanctuary Program (NMSP) has collaborated with NOAA’s National Centers for Coastal Ocean Science (NCCOS) to conduct a biogeographic assessment of selected marine resources using geographic information system (GIS) technology. This report complements the analyses conducted for this effort by providing an overview of the physical and biological characteristics of the region. Key ecosystems and species occurring in estuarine and marine waters are highlighted and linkages between them discussed. In addition, this report describes biogeographic processes operating to affect species’ distributional patterns. The biogeographic analyses build upon this background to further understanding of the biogeography of this region. (PDF contaons 172 pages)