966 resultados para MOMENTS
Resumo:
We investigate the ability of the local density approximation (LDA) in density functional theory to predict the near-edge structure in electron energy-loss spectroscopy in the dipole approximation. We include screening of the core hole within the LDA using Slater's transition state theory. We find that anion K-edge threshold energies are systematically overestimated by 4.22 +/- 0.44 eV in twelve transition metal carbides and nitrides in the rock-salt (B1) structure. When we apply this 'universal' many-electron correction to energy-loss spectra calculated within the transition state approximation to LDA, we find quantitative agreement with experiment to within one or two eV for TiC, TiN and VN. We compare our calculations to a simpler approach using a projected Mulliken density which honours the dipole selection rule, in place of the dipole matrix element itself. We find remarkably close agreement between these two approaches. Finally, we show an anomaly in the near-edge structure in CrN to be due to magnetic structure. In particular, we find that the N K edge in fact probes the magnetic moments and alignments of ther sublattice.
Resumo:
It is shown how the fractional probability density diffusion equation for the diffusion limit of one-dimensional continuous time random walks may be derived from a generalized Markovian Chapman-Kolmogorov equation. The non-Markovian behaviour is incorporated into the Markovian Chapman-Kolmogorov equation by postulating a Levy like distribution of waiting times as a kernel. The Chapman-Kolmogorov equation so generalised then takes on the form of a convolution integral. The dependence on the initial conditions typical of a non-Markovian process is treated by adding a time dependent term involving the survival probability to the convolution integral. In the diffusion limit these two assumptions about the past history of the process are sufficient to reproduce anomalous diffusion and relaxation behaviour of the Cole-Cole type. The Green function in the diffusion limit is calculated using the fact that the characteristic function is the Mittag-Leffler function. Fourier inversion of the characteristic function yields the Green function in terms of a Wright function. The moments of the distribution function are evaluated from the Mittag-Leffler function using the properties of characteristic functions and a relation between the powers of the second moment and higher order even moments is derived. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
It is shown that the Mel'nikov-Meshkov formalism for bridging the very low damping (VLD) and intermediate-to-high damping (IHD) Kramers escape rates as a function of the dissipation parameter for mechanical particles may be extended to the rotational Brownian motion of magnetic dipole moments of single-domain ferromagnetic particles in nonaxially symmetric potentials of the magnetocrystalline anisotropy so that both regimes of damping, occur. The procedure is illustrated by considering the particular nonaxially symmetric problem of superparamagnetic particles possessing uniaxial anisotropy subject to an external uniform field applied at an angle to the easy axis of magnetization. Here the Mel'nikov-Meshkov treatment is found to be in good agreement with an exact calculation of the smallest eigenvalue of Brown's Fokker-Planck equation, provided the external field is large enough to ensure significant departure from axial symmetry, so that the VLD and IHD formulas for escape rates of magnetic dipoles for nonaxially symmetric potentials are valid.
Resumo:
Structural and magnetic properties of thin Mn films on the Fe(001) surface have been investigated by a combination of photoelectron spectroscopy and computer simulation in the temperature range 300 Kless than or equal toTless than or equal to750 K. Room-temperature as deposited Mn overlayers are found to be ferromagnetic up to 2.5-monolayer (ML) coverage, with a magnetic moment parallel to that of the iron substrate. The Mn atomic moment decreases with increasing coverage, and thicker samples (4-ML and 4.5-ML coverage) are antiferromagnetic. Photoemission measurements performed while the system temperature is rising at constant rate (dT/dtsimilar to0.5 K/s) detect the first signs of Mn-Fe interdiffusion at T=450 K, and reveal a broad temperature range (610 Kless than or equal toTless than or equal to680 K) in which the interface appears to be stable. Interdiffusion resumes at Tgreater than or equal to680 K. Molecular dynamics and Monte Carlo simulations allow us to attribute the stability plateau at 610 Kless than or equal toTless than or equal to680 K to the formation of a single-layer MnFe surface alloy with a 2x2 unit cell and a checkerboard distribution of Mn and Fe atoms. X-ray-absorption spectroscopy and analysis of the dichroic signal show that the alloy has a ferromagnetic spin structure, collinear with that of the substrate. The magnetic moments of Mn and Fe atoms in the alloy are estimated to be 0.8mu(B) and 1.1mu(B), respectively.
Resumo:
We have analysed the electronic wave functions from an ab initio simulation of the ionic liquid (room temperature molten salt) dimethyl imidazolium chloride ([dmim][Cl] or [C1mim][Cl]) using localized Wannier orbitals. This allows us to assign electron density to individual ions. The probability distributions of the ionic dipole moments for an isolated ion and for ions in solution are compared. The liquid environment is found to polarize the cation by about 0.7 D and to increase the amplitude of the fluctuations in the dipole moments of both cation and anion. The relative changes in nuclear and electronic contributions are shown. The implications for classical force fields are discussed.
Resumo:
A method for investigating the dynamics of atomic magnetic moments in current-carrying magnetic point contacts under bias is presented. This combines the nonequilibrium Green's function (NEGF) method for evaluating the current and the charge density with a description of the dynamics of the magnetization in terms of quasistatic thermally activated transitions between stationary configurations. This method is then implemented in a tight-binding (TB) model with parameters chosen to simulate the main features of the electronic structures of magnetic transition metals. We investigate the domain wall (DW) migration in magnetic monoatomic chains sandwiched between magnetic leads, and for realistic parameters find that collinear arrangement of the magnetic moments of the chain is always favorable. Several stationary magnetic configurations are identified, corresponding to a different number of Bloch walls in the chain and to a different current. The relative stability of these configurations depends on the geometrical details of the junction and on the bias; however, we predict transitions between different configurations with activation barriers of the order of a few tens of meV. Since different magnetic configurations are associated with different resistances, this suggests an intrinsic random telegraph noise at microwave frequencies in the I-V curves of magnetic atomic point contacts at room temperature. Finally, we investigate whether or not current-induced torques are conservative.
Resumo:
We extend a new formalism, which allows correlated electron-ion dynamics to be applied to the problem of open boundary conditions. We implement this at the first moment level (allowing heating of ions by electrons) and observe the expected cooling in the classical part of the ionic kinetic energy and current-induced heating in the quantum contribution. The formalism for open boundaries should be easily extended to higher moments of the correlated electron-ion fluctuations.
Resumo:
It is by mapping an area that the geographer comes to understand the contours and formations of a place. The “place” in this case is the prison world. This article serves to map moments in prison demonstrating how “old” female bodies are performed under the prison gaze. In this article I will illustrate how older women subvert, negotiate, or invoke discourse as a means of reinscribing the normalizing discourses that serve to confine and define older women's experiences in prison. Female elders in prison become defined and confined by regimes of femininity and ageism. They have to endure symbolic and actual intrusions of physical privacy, which serve to remind them of what they were, where they are, and what they have become. This article will critically explore the complexity and contradictions of time use in prison and how they impact on embodied identities. By incorporating the voices of elders, I hope to draw out the contradictions and dilemmas which they experience, thereby illustrating the relationship between time, their involvement in doing time, and the performance of time in a total institution (see Goffman, 1961), and the relationship between temporality and existence. The stories of the women show how their identities are caught within the movement and motion of time and space, both in terms of the time of “the real” on the outside and within prison time. This is the in-between space of carceral time within which women live and which they negotiate. It is by being caught in this network of carceral time that they are constantly being “remade” as their body/performance of identities alters within it. While only a small percentage of the female prison population in the United Kingdom are in later life, one has to question why criminological and gerontological literature fail to address the needs of a growing significant minority.
Resumo:
El objetivo de este trabajo consiste en estudiar la evolución de los destinos turísticos litorales consolidados a partir del análisis comparado entre Balneario Camboriú y Benidorm. Se trata de dos destinos localizados en contextos territoriales y turísticos diferentes, en los que se contrastan de manera empírica los indicadores de evolución de los destinos y se vinculan las dinámicas evolutivas con el modelo territorial-turístico resultante en cada destino. El análisis realizado permite contrastar los postulados de los modelos evolutivos clásicos (Butler, 1980) e incorporar los nuevos planteamientos de la geografía económica evolutiva. La investigación delimita cronológicamente los periodos de desarrollo de ambos destinos para identificar los factores con mayor incidencia en la evolución de los mismos. Una evolución marcada, fundamentalmente, por la ubicación geográfica, la planificación y gestión urbanoturística a diferentes escalas, la dependencia de determinados mercados emisores y la influencia de factores macroeconómicos. Un conjunto de factores interrelacionados que dibujan trayectorias dispares para los destinos analizados.
Resumo:
Reduced-size polarized (ZmPolX) basis sets are developed for the second-row atoms X = Si, P, S, and Cl. The generation of these basis sets follows from a simple physical model of the polarization effect of the external electric field which leads to highly compact polarization functions to be added to the chosen initial basis set. The performance of the ZmPolX sets has been investigated in calculations of molecular dipole moments and polarizabilities. Only a small deterioration of the quality of the calculated molecular electric properties has been found. Simultaneously the size of the present reduced-size ZmPolX basis sets is about one-third smaller than that of the usual polarized (PolX) sets. This reduction considerably widens the range of applications of the ZmPolX sets in calculations of molecular dipole moments, dipole polarizabilities, and related properties.
Resumo:
The artificial magnetic conductor (AMC) and electromagnetic band gap (EBG) characteristics of planar periodic metallic arrays printed on grounded dielectric substrate are investigated. The currents induced on the arrays are presented for the first time and their study reveals two distinct resonance phenomena associated with these surfaces. A new technique is presented to tailor the spectral position of the AMC operation and the EBG. Square patch arrays with fixed element size and variable periodicities are employed as working examples to demonstrate the dependence of the spectral AMC and EBG characteristics on array parameters. It is revealed that as the array periodicity is increased, the AMC frequency is increased, while the EBG frequency is reduced. This is shown to occur due to the different nature of the resonance phenomena and the associated underlying physical mechanisms that produce the two effects. The effect of substrate thickness is also investigated. Full wave method of moments (MoM) has been employed for the derivation of the reflection characteristics, the currents and the dispersion relations. A uniplanar array with simultaneous AMC and EBG operation is demonstrated theoretically and experimentally.
Resumo:
This paper presents an efficient. modeling technique for the derivation of the dispersion characteristics of novel uniplanar metallodielectric periodic structures. The analysis is based on the method of moments and an interpolation scheme, which significantly accelerates the computations. Triangular basis functions are used that allow for modeling of arbitrary shaped metallic elements. Based on this method, novel uniplanar left-handed (LH) metamaterials are proposed. Variations of the split rectangular-loop element printed on grounded dielectric substrate are demonstrated to possess LH propagation properties. Full-wave dispersion curves are presented. Based on the dual transmission-line concept, we study the distribution of the modal fields And the variation of series capacitance and shunt inductance for all the proposed elements. A verification of the left-handedness is presented by means of full-wave simulation of finite uniplanar arrays using commercial software (HFSS). The cell dimensions are a small fraction of the wavelength (approximately lambda/24) so that the structures can he considered as a homogeneous effective medium. The structures are simple, readily scalable to higher frequencies, and compatible with low-cost fabrication techniques.
Resumo:
An efficient modelling technique is proposed for the analysis of a fractal-element electromagnetic band-gap array. The modelling is based on a method of moments modal analysis in conjunction with an interpolation scheme, which significantly accelerates the computations. The plane-wave and the surface-wave responses of the structure have been studied by means of transmission coefficients and dispersion diagrams. The multiband properties and the compactness of the proposed structure are presented. The technique is general and can be applied to arbitrary-shaped element geometries.
Resumo:
Periodic loading of 1-D metallodielectric electromagnetic bandgap (MEBG) structures has been rigorously investigated. Miniaturised and broadband MEBG structures have been produced by means of periodically loading a dipole array. A study has been carried out with regard to the loading mechanism, the number of stubs, the topology of the structure and the order of loading. Simulations have been carried out using a method of moments based software. First order uniform loading stubs have yielded a significant size reduction of the MEBG array and the bandwidth has doubled. Good agreement between simulations and measurements has been achieved. The current distribution on the proposed structure has been studied, yielding valuable insight. An interdigital topology has resulted in further miniaturisation and bandwidth enhancement. Fractal-type arrays have been produced after applying second order loading. A maximum miniaturisation of 2.5:1 has been achieved.
Resumo:
We report a new version of the UMIST database for astrochemistry. The previous (1995) version has been updated and its format has been revised. The database contains the rate coefficients, temperature ranges and - where available - the temperature dependence of 4113 gas-phase reactions important in astrophysical environments. The data involve 396 species and 12 elements. We have also tabulated permanent electric dipole moments of the neutral species and heats of formation. A new table lists the photo process cross sections (ionisation, dissociation, fragmentation) for a few species for which these quantities have been measured. Data for Deuterium fractionation are given in a separate table. Finally, a new online Java applet for data extraction has been created and its use is explained in detail. The detailed new datafiles and associated software are available on the World Wide Web at http://www.rate99.co.uk.