929 resultados para MATERIAIS CERÂMICOS
Resumo:
The integrated management of municipal solid waste in Brazil is held legally responsible by the city council administration. This is done since the year 2010 with the publication of the National Solid Waste Policy term. According to the policy and law, each city must encourage the implementation of selective collection and the participation of waste picker´s entities aiming social inclusion. However, these actions haven’t yet reached its legal aims. These workers are considered regarding collection actions but are stripped of certain basic labor rights not in conformation with the Decent Work concept. This type of work, according to International Labour Organization, must be seen as work that is properly paid for and must be done regarding conditions of freedom, equity, security and able to provide workers with a dignified life conditions. Thus, this work aims to investigate the implementation process regarding the Solid Waste National Policy in Natal-Rio Grande do Norte in Brazil. This is done considering socio-productive insertion of recyclable material collectors. The research is substantiated by a qualitative approach as well as documental and bibliographical research. A field research considering the cooperatives as well “in locco" observation and semi-structured interviews were carried out between the time span of 2013 and 2014. In order to investigate decent daily working conditions the research emphasized municipal management actions in Natal towards social inclusion that aim to reflect on the progress and difficulties experimented. It is seen that even when these cooperatives receive government support there are still important struggles that need to be overcome. The worker´s tasks are risky, the work environment in not safe or is adequate in terms of health issues. There is the stigma of it being considered an occupational task, the low individual income distancing the activity regarding parameters of the Green Employment and Decent Work concept. On the other hand, the survey showed potential as the relentless pursuit on behalf of the cooperatives that still search better work condition improvement.
Resumo:
In this paper a synthesis parameters study was conducted in order to optimize the obteinment of MCM-22 (MWW structure) and increase its accessibility, getting higher external surface and generating mesopores. Syntheses with Si / Al = 15 and Si / Al = 50 ratios were performed under static conditions at different temperatures and with seeds induction, which resulted in MCM-22 pure and crystalline (Si / Al ratio = 15) after 3 days and Si / Al = 50 after 11 days. The reduction of hexamethyleneimine content (HMI) was studied in the stirring synthesis and a HMI reduction of 47% was possible through the mother liquor reuse, in addition, a specific area of 481 m² / g has been obtained in the fourth synthesis day. Regarding the increase of accessibility of the MCM-22 zeolite skeins of MCM-22 plates with about 2 μm were obtained, through the use of dissolved silica, addition of seeds, increased temperature and synthesis time of 2 days. A significant value of specific area was found for this material, around 500 m² / g. Also with respect to the increase of MCM-22 accessibility, treatment with oxalic acid concentration of 0.5 mol / L and silanization of proto-zeolitic units resulted in the mesopores formation . Furthermore, silanization still favored reduction of 70 % in crystal size and a specific area of 566 m² / g.
Resumo:
The unbridled consumption of electronic equipment associated with fast immersion of new technologies on the market leads to the accelerated growth of electronic waste. Such waste mostly contains printed circuit boards in its structure. Printed circuit boards have many metals, including heavy metals, being highly toxic. Electronic waste is discarded improperly and indiscriminately, usually without any previous treatment and with other municipal waste, contaminating the environment and causing serious problems to human health. Beyond these metals, there are also precious metals and high value-added basis, that can be recovered and recycled, reducing the exploration of natural resources. Thus, due to the high growth potential and reuse of these waste treatment processes, characterization and separation were applied to the printed circuit boards. The printed circuit boards were subjected to physical treatments such as dismantling, crushing, sizing separation, magnetic separation and chemical treatments such as pyrolysis and leaching. Through characterization process (pyrolysis and leaching) the proportions of the components of the granulometric range were determined: 46,08% of metals; 23,32% of polymers and 30,60% of ceramics. It was also observed by particle size separation that metal components tend to concentrate in coarse fractions, while polymeric and ceramic components in fine fractions. From the magnetic separation process was obtained 12,08% of magnetic material and 82,33% of non-magnetic material.
Resumo:
This work shows that the synthesis by combustion is a prominent alternative to obtain ceramic powders of higher oxides, nanostructured and of high purity, as the ferrites of formulas Co(1-x)Zn(x)Fe2O4 e Ni(1-x)Zn(x)Fe2O4 with x ranging from 0.2 mols, in a range from 0.2 ≤ x ≥ 1.0 mol, that presents magnetic properties in coexistence of ferroelectric and ferrimagnetic states, which can be used in antennas of micro tapes and selective surfaces of low frequency in a range of miniaturized microwaves, without performance loss. The obtainment occurred through the combustion process, followed by appropriate physical processes and ordered to the utilization of the substrate sinterization process, it gave us a ceramic material, of high purity degree in a nanometric scale. The Vibrating Sample Magnetometer (VSM) analysis showed that those ferritic materials presents parameters, as materials hysteresis, that have own behavior of magnetic materials of good quality, in which the magnetization states can be suddenly changed with a relatively small variation of the field intensity, having large applications on the electronics field. The X-ray Diffraction (XRD) analysis of the ceramic powders synthesized at 900 °C, characterize its structural and geometrical properties, the crystallite size and the interplanar spacing. Other analysis were developed, as Scanning Electron Microscopy (SEM), X-ray Fluorescence (XRF), electric permittivity and the tangent loss, in high frequencies, through the equipment ZVB - 14 Vector Network Analyzer 10 MHz-14 GHz, of ROHDE & SCHWART.
Resumo:
O presente estudo aborda a utilização de carvão ativado comercial na remoção de ácidos húmicos em meio aquoso. O objetivo principal é desenvolver e caracterizar materiais carbonáceos visando aplicações de remoção de ácidos húmicos em meio aquoso por processos de adsorção e oxidação. Testes de remoção do poluente foram desenvolvidos com a utilização do carvão comercial, carvão modificado a partir de tratamentos ácidos e compósito confeccionado com a impregnação de ferro no carvão. Espumas de carbono com dispersões de carvão ativado e óxidos de ferro também foram desenvolvidas buscando aplicações de remoção do poluente através de processos eletroquímicos. Os resultados das caracterizações demonstraram ganho de área superficial a partir do tratamento ácido, a presença dispersa de ferro em todo carvão na forma de fase maghemita com a introdução do metal, e ganho de estabilidade eletroquímica na espuma, com a presença de dispersões de carvão ativados impregnados com ferro. O processo oxidativo Fenton, foto assistido por radiação UV, demonstrou maior eficiência para remoção do ácido húmico em água.
Resumo:
Bionanocomposites systems clay base (montmorillonite and sepiolite), layered double hidroxides and biopolymers (carboxymethylcellulose and zein) were evaluated as topical delivery systems with antibacterial activity and as oral delivery systems. For this study, neomycin, a topical antibiotic, indicated mainly for open wound infections. The drug amoxicillin, an antibiotic indicated mainly for throat infections, were also used in this study. Both antibiotics were used as model drugs. Initially, drugs were incorporated directly into the biopolymer matrix, comprising the combination of carboxymethylcellulos and zein, being conformed as movies and balls and evaluated for their antibacterial activity and controlled release simulating gastrointestinal fluids. Moreover, hybrids materials have been prepared where the neomycin drug was incorporated into the lamellar inorganic solids, such as montmorillonite by ion exchange reaction, and the fibrous type, such as sepiolite by adsorption in aqueous solution. But the drug amoxicillin was incorporated into layered double hydroxides by anion exchange and montmorillonite by cation exchange. The resulting hybrids were in turn combined with the biopolymer matrix yielding bionanocomposites shaped materials such as films were tested for their antibacterial activity, and the shaped materials beads were tested for their release in the gastrointestinal fluids. Through the analysis of various physico-chemical techniques, we observed the interactions between the studied materials, the formation of hybrids materials, obtaining the bionanocomposites materials and material efficiency when applied in controlled release of drugs both topical and use oral mainly influenced by the presence of zein, are promising as topical delivery systems and oral drugs.
Resumo:
In this work are considered two bidimensional systems, with distints chacacteristcs and applicabilitys. Is studied the adsorption of transition metals (MT) Fe, Co, Mn and Ru in extended defects, formed by graphene grain boundaries. First in pristine graphene The hollow site of carbon hexagon, in pristine graphene, are the most stable for MT adsorption. The Dirac cone in eletronic structure of graphene was manteined with the presence of MT. For the considered grain boundaries the MT has a greater stability for absorption in the grain boundaries sites in comparison with pristine graphene. Through the energy barrier values, are observed diffusion chanels for MT localized on the grain boundaries. This diffusion chanels indicate a possible formation of nanolines of MT in graphene. For the first stage of the nanolines, ate observed a better stability for the system with greater MT concentration, due to MT-MT interactions. Also, due to the magnetic moment of the MT, the nanolines show a magnetization. For the most stable configurations the system are metallics, particularly for Fe the band structure indicates an anisotropic spin current. In a second study, are considereted the retention capacity for metallic contaminants Cd and Hg in clayminerals, kaolinite (KAO) and montmorillonite (MMT). Through the adsorption energies of contaminantes in the clayminerals, was observed a increase in stability with the increase of contaminants concentration, due to the interaction Cd-Cd and Hg-Hg. Also, was observed that KAO has a strong interaction beteween monolayers than MMT. In this sence, for the adsoption process of contaminantes in the natural form of KAO and MMT, the latter has a better retention capacity, due to the small net work for contaminant intercalation. However, when the modification of clayminerals, with molecules that increase the spacing between monolayers, exist a optimal condition, which the contaminant absorption are more stable in KAO system than in MMT. In the Langmuir adsorption model for the clayminerals in the optimal monolayer spacing, the retention capacity for Cd and Hg in KAO system are 21% greater than in MMT system. Also, for the X-ray Absorption Near Edge Spectroscopy (XANES) for the K edge of Cd and Hg, are found a positive shift of absorption edge with the decreasing of monolayer spacing. This result indicates a possible way to determine the concentration of adsorbed contaminats in relation to unabsorbed ones, from the decomposition of experimental XANES in the obteined spectras.
Resumo:
O fabrico de componentes em plástico pode apresentar várias vantagens relativamente aos materiais metálicos e cerâmicos. Podem ser processados em quantidades relativamente elevadas e a baixo custo, no entanto, estes componentes em plástico têm baixa resistência e são sensíveis à temperatura. O desenvolvimento e o fabrico de moldes de injeção é uma área importante em que são utilizados softwares de modelação e simulação, bem como, tecnologias avançadas de fabrico (equipamentos de 5 eixos de alta velocidade, tanto de maquinação como de electroerosão) e tecnologias convencionais de maquinação e montagem. O projeto de moldes é naturalmente uma área extremamente importante na obtenção das peças plásticas, de acordo com o pretendido pelo cliente, com tempos de ciclo de moldação adequados e dimensionado para o número de peças pretendidas. O objetivo final deste trabalho foi o de desenvolver e fabricar dois moldes de desenroscamento automático, com recurso ao software de modelação Topsolid e ao software de simulação Moldflow. Foi possível também, obter peças plásticas no material POM, material escolhido pelo cliente, dentro dos critérios dimensionais, estruturais e tempos de ciclo de injeção pretendidos pelo cliente.
Resumo:
MELO, D. M. A. et al. Synthesis and charactezarion of lanthanum and yttrium doped Fe2O3 pigments. Cerâmica, São Paulo, v. 53, p. 79-82, 2007.
Resumo:
VARELA, M. L. et al. Influência da adição de resíduo de caulim nas propriedades tecnológicas de uma massa padrão de porcelanato produzido em escala industrial. Cerâmica, v.55, n.334 p.209-215. 2009.ISSN 0366-6913.Disponível em:
Resumo:
FORMIGA, Felipe Lira et al. Avaliação da Potencialidade de Uso do Resíduo Proveniente da Indústria de Beneficiamento do Caulim na Produção de Piso Cerâmico. Cerâmica Industrial, v. 14, p. 41-45, 2009.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)