961 resultados para Low temperatures.
Resumo:
The introduction of a low-temperature (LT) tail after P emitter diffusion was shown to lead to considerable improvements in electron lifetime and solar cell performance by different researchers. So far, the drawback of the investigated extended gettering treatments has been the lack of knowledge about optimum annealing times and temperatures and the important increase in processing time. In this manuscript, we calculate optimum annealing temperatures of Fe-contaminated Si wafers for different annealing durations. Subsequently, it is shown theoretically and experimentally that a relatively short LT tail of 15 min can lead to a significant reduction of interstitial Fe and an increase in electron lifetime. Finally, we calculate the potential improvement of solar cell efficiency when such a short-tail extended P diffusion gettering is included in an industrial fabrication process.
Mimicry of the calcium-induced conformational state of troponin C by low temperature under pressure.
Resumo:
Calcium binding to the N-domain of troponin C initiates a series of conformational changes that lead to muscle contraction. Calcium binding provides the free energy for a hydrophobic region in the core of N-domain to assume a more open configuration. Fluorescence measurements on a tryptophan mutant (F29W) show that a similar conformational change occurs in the absence of Ca2+ when the temperature is lowered under pressure. The conformation induced by subzero temperatures binds the hydrophobic probe bis-aminonaphthalene sulfonate, and the tryptophan has the same fluorescence lifetime (7 ns) as in the Ca2+-bound form. The decrease in volume (delta V = -25.4 ml/mol) corresponds to an increase in surface area. Thermodynamic measurements suggest an enthalpy-driven conformational change that leads to an intermediate with an exposed N-domain core and a high affinity for Ca2+.