987 resultados para LA2CUO4 DELTA
Resumo:
Large Arctic rivers discharge significant amounts of dissolved organic matter (DOM) into the Arctic Ocean. We sampled natural waters of the Lena River, the Buor-Khaya Bay (Laptev Sea), permafrost melt water creeks, ice complex melt water creeks and a lake. The goal of this study was to characterize the molecular DOM composition with respect to different water bodies within the Lena Delta. We aimed at an identification of source-specific DOM molecular markers and their relative contribution to DOM of different origin. The molecular characterization was performed for solid-phase extracted DOM by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Average dissolved organic carbon concentrations in the original samples were 490±75 µmol C/L for riverine and bay samples and 399±115 µmol C/L for permafrost melt water creeks. Average TDN concentrations were elevated in the permafrost melt waters (19.7±7.1 µmol N/L) in comparison to the river and the bay (both 13.2±2.6 µmol N/L). FT-ICR MS and statistical tools demonstrated that the origin of DOM in the Lena Delta was systematically reflected in its molecular composition. Magnitude weighted parameters calculated from MS data (O/Cwa, H/Cwa, C/Nwa) highlighted preliminary sample discrimination. The highest H/Cwa of 1.315 was found for DOM in melt water creeks in comparison to 1.281 for river and 1.230 for the bay samples. In the bay samples we observed a higher fraction of oxygen-rich components which was reflected in an O/Cwa ratio of 0.445 in comparison to 0.425 and 0.427 in the river and creeks, respectively. From the southernmost location to the bay a relative depletion of nitrogenous molecular markers and an enrichment of oxidized DOM components occurred. The highest contribution of nitrogenous components was indicative for creeks reflected in a C/Nwa of 104 in comparison to 143 and 176 in the river and bay, respectively. These observations were studied on a molecular formula level using principal component and indicator value analyses. The results showed systematic differences with respect to water origin and constitute an important basis for a better mechanistic understanding of DOM transformations in the changing Arctic rivers.
Resumo:
Studies of the annual pollen and spore deposition in different areas of the Lena Delta were undertaken for the first time in the Asian sector of the Arctic during the Russian-German ''LENA 98'' and ''LENA 99'' expeditions in the framework of the International ''Laptev Sea System-2000'' Project. To achieve this objective, three spore-pollen traps were set up along the meridional delta profile in accordance with the European Pollen Monitoring Programme for the period July 1998 to August 1999. A comparison between the results of spore-pollen analysis of the contents of traps and the surrounding vegetation was performed. The results confirmed the current spore-pollen spectra are comprised both of pollen and spores of the local plants and of long-distance pollen and spores. The dependence of the long-distance pollen deposition on the character of the wind regime of the region was established. The prevailing southerly and southeasterly wind direction determines the main pollen influx of tree species from the areas of their growth south of the delta. The features of the morphological structure and fossilization of pollen and the features of the productive capability and plant growing conditions are of large significance in the pollen transfer and deposition.
Resumo:
Three radiocarbon-dated sediment cores from the northeastern Vietnamese Mekong River Delta have been analysed with a multiproxy approach (grain size, pollen and spores, macro-charcoal, carbon content) to unravel the palaeoenvironmental history of the region since the mid Holocene. During the mid-Holocene sea-level highstand a diverse, zoned and widespread mangrove belt (dominated by Rhizophora) covered the extended tidal flats. The subsequent regression and coeval delta progradation led to the rapid development of a back-mangrove community dominated by Ceriops and Bruguiera but also represented locally by e.g. Kandelia, Excoecaria and Phoenix. Along rivers this community seems to have endured even when the adjoining floodplain had already shifted to freshwater vegetation. Generally this freshwater vegetation has a strong swamp signature but locally Arecaceae, Fabaceae, Moraceae/Urticaceae and Myrsinaceae are important and mirror the geomorphological diversity of the delta plain. The macro-charcoal record implies that natural burning of vegetation occurred throughout the records, however, the occurrence of the highest amounts of macro-charcoal particles is linked with modern human activity.
Resumo:
Thermokarst lakes are typical features of the northern permafrost ecosystems, and play an important role in the thermal exchange between atmosphere and subsurface. The objective of this study is to describe the main thermal processes of the lakes and to quantify the heat exchange with the underlying sediments. The thermal regimes of five lakes located within the continuous permafrost zone of northern Siberia (Lena River Delta) were investigated using hourly water temperature and water level records covering a 3-year period (2009-2012), together with bathymetric survey data. The lakes included thermokarst lakes located on Holocene river terraces that may be connected to Lena River water during spring flooding, and a thermokarst lake located on deposits of the Pleistocene Ice Complex. Lakes were covered by ice up to 2 m thick that persisted for more than 7 months of the year, from October until about mid-June. Lake-bottom temperatures increased at the start of the ice-covered period due to upward-directed heat flux from the underlying thawed sediment. Prior to ice break-up, solar radiation effectively warmed the water beneath the ice cover and induced convective mixing. Ice break-up started at the beginning of June and lasted until the middle or end of June. Mixing occurred within the entire water column from the start of ice break-up and continued during the ice-free periods, as confirmed by the Wedderburn numbers, a quantitative measure of the balance between wind mixing and stratification that is important for describing the biogeochemical cycles of lakes. The lake thermal regime was modeled numerically using the FLake model. The model demonstrated good agreement with observations with regard to the mean lake temperature, with a good reproduction of the summer stratification during the ice-free period, but poor agreement during the ice-covered period. Modeled sensitivity to lake depth demonstrated that lakes in this climatic zone with mean depths > 5 m develop continuous stratification in summer for at least 1 month. The modeled vertical heat flux across the bottom sediment tends towards an annual mean of zero, with maximum downward fluxes of about 5 W/m**2 in summer and with heat released back into the water column at a rate of less than 1 W/m**2 during the ice-covered period. The lakes are shown to be efficient heat absorbers and effectively distribute the heat through mixing. Monthly bottom water temperatures during the ice-free period range up to 15 °C and are therefore higher than the associated monthly air or ground temperatures in the surrounding frozen permafrost landscape. The investigated lakes remain unfrozen at depth, with mean annual lake-bottom temperatures of between 2.7 and 4 °C.
Resumo:
Subgrid processes occur in various ecosystems and landscapes but, because of their small scale, they are not represented or poorly parameterized in climate models. These local heterogeneities are often important or even fundamental for energy and carbon balances. This is especially true for northern peatlands and in particular for the polygonal tundra, where methane emissions are strongly influenced by spatial soil heterogeneities. We present a stochastic model for the surface topography of polygonal tundra using Poisson-Voronoi diagrams and we compare the results with available recent field studies. We analyze seasonal dynamics of water table variations and the landscape response under different scenarios of precipitation income. We upscale methane fluxes by using a simple idealized model for methane emission. Hydraulic interconnectivities and large-scale drainage may also be investigated through percolation properties and thresholds in the Voronoi graph. The model captures the main statistical characteristics of the landscape topography, such as polygon area and surface properties as well as the water balance. This approach enables us to statistically relate large-scale properties of the system to the main small-scale processes within the single polygons.
Resumo:
In this article, we present a study on the surface energy balance of a polygonal tundra landscape in northeast Siberia. The study was performed during half-year periods from April to September in each of 2007 and 2008. The surface energy balance is obtained from independent measurements of the net radiation, the turbulent heat fluxes, and the ground heat flux at several sites. Short-wave radiation is the dominant factor controlling the magnitude of all the other components of the surface energy balance during the entire observation period. About 50% of the available net radiation is consumed by the latent heat flux, while the sensible and the ground heat flux are each around 20 to 30%. The ground heat flux is mainly consumed by active layer thawing. About 60% of the energy storage in the ground is attributed to the phase change of soil water. The remainder is used for soil warming down to a depth of 15 m. In particular, the controlling factors for the surface energy partitioning are snow cover, cloud cover, and the temperature gradient in the soil. The thin snow cover melts within a few days, during which the equivalent of about 20% of the snow-water evaporates or sublimates. Surface temperature differences of the heterogeneous landscape indicate spatial variabilities of sensible and latent heat fluxes, which are verified by measurements. However, spatial differences in the partitioning between sensible and latent heat flux are only measured during conditions of high radiative forcing, which only occur occasionally.
Resumo:
Although ponds make up roughly half of the total area of surface water in permafrost landscapes, their relevance to carbon dioxide emissions on a landscape scale has, to date, remained largely unknown. We have therefore investigated the inflows and outflows of dissolved organic and inorganic carbon from lakes, ponds, and outlets on Samoylov Island, in the Lena Delta of northeastern Siberia in September 2008, together with their carbon dioxide emissions. Outgassing of carbon dioxide (CO2) from these ponds and lakes, which cover 25% of Samoylov Island, was found to account for between 74 and 81% of the calculated net landscape-scale CO2 emissions of 0.2-1.1 g C/m**2/d during September 2008, of which 28-43% was from ponds and 27-46% from lakes. The lateral export of dissolved carbon was negligible compared to the gaseous emissions due to the small volumes of runoff. The concentrations of dissolved inorganic carbon in the ponds were found to triple during freezeback, highlighting their importance for temporary carbon storage between the time of carbon production and its emission as CO2. If ponds are ignored the total summer emissions of CO2-C from water bodies of the islands within the entire Lena Delta (0.7-1.3 Tg) are underestimated by between 35 and 62%.
Resumo:
Comprehensive investigations revealed that modern deposits in the northern Caspian Sea involve terrigenous sands and aleurites with admixture of detritus and intact bivalve shells, including coquina. Generally, these deposits overlay dark grayish viscous clays. Similar geological situation occurs in the Volga River delta; however, local deposits are much poorer in biogenic constituents. Illite prevails among clay minerals. In coarse aleurite fraction (0.100-0.050 mm) heavy transparent minerals are represented mostly by epidotes, while light minerals - mostly by quartz and feldspars. Sedimentary material in the Volga River delta is far from completely differentiated into fractions due to abundant terrigenous inflows. Comparatively better grading of sediments from the northern Caspian Sea is due to additional factors such as bottom currents and storms. When passing from the Volga River delta to the northern Caspian Sea, sediments are enriched in rare earth elements (except Eu), Ca, Au, Ni, Se, Ag, As, and Sr, but depleted in Na, Rb, Cs, K, Ba, Fe, Cr, Co, Sc, Br, Zr, ??, U, and Th. Concentrations of Zn remain almost unchanged. Sedimentation rates and types of recent deposits in the northern Caspian Sea are governed mainly by abundant runoff of the Volga River.