983 resultados para Jourdain, Éloi
Resumo:
Dans Ce Texte Nous Examinons les Effets de la Loi du Zonage Agricole du Quebec, Proclame En Decembre 1978 Sur le Prix du Sol Dans une Banlieu de Montreal. a L'aide de Donnees Sur les Transactions Normales Faites a Carignan et Saint-Mathias de 1975 a 1981, Nous Estimons, a L'aide des Moindres Carrees Ordinaires, une Equation de Determination du Prix Par Acre Avec Comme Variables Independantes la Dimension du Lot, la Distance de Montreal, les Services Disponibles (Egouts,...) et le Zonage Agricole (Ou Non) du Sol. Nos Resultats Nous Indiquent Que le Zonage Agricole Reduit le Prix D'un Acre de Sol.
Resumo:
Ce Texte Presente Plusieurs Resultats Exacts Sur les Seconds Moments des Autocorrelations Echantillonnales, Pour des Series Gaussiennes Ou Non-Gaussiennes. Nous Donnons D'abord des Formules Generales Pour la Moyenne, la Variance et les Covariances des Autocorrelations Echantillonnales, Dans le Cas Ou les Variables de la Serie Sont Interchangeables. Nous Deduisons de Celles-Ci des Bornes Pour les Variances et les Covariances des Autocorrelations Echantillonnales. Ces Bornes Sont Utilisees Pour Obtenir des Limites Exactes Sur les Points Critiques Lorsqu'on Teste le Caractere Aleatoire D'une Serie Chronologique, Sans Qu'aucune Hypothese Soit Necessaire Sur la Forme de la Distribution Sous-Jacente. Nous Donnons des Formules Exactes et Explicites Pour les Variances et Covariances des Autocorrelations Dans le Cas Ou la Serie Est un Bruit Blanc Gaussien. Nous Montrons Que Ces Resultats Sont Aussi Valides Lorsque la Distribution de la Serie Est Spheriquement Symetrique. Nous Presentons les Resultats D'une Simulation Qui Indiquent Clairement Qu'on Approxime Beaucoup Mieux la Distribution des Autocorrelations Echantillonnales En Normalisant Celles-Ci Avec la Moyenne et la Variance Exactes et En Utilisant la Loi N(0,1) Asymptotique, Plutot Qu'en Employant les Seconds Moments Approximatifs Couramment En Usage. Nous Etudions Aussi les Variances et Covariances Exactes D'autocorrelations Basees Sur les Rangs des Observations.
Resumo:
The GARCH and Stochastic Volatility paradigms are often brought into conflict as two competitive views of the appropriate conditional variance concept : conditional variance given past values of the same series or conditional variance given a larger past information (including possibly unobservable state variables). The main thesis of this paper is that, since in general the econometrician has no idea about something like a structural level of disaggregation, a well-written volatility model should be specified in such a way that one is always allowed to reduce the information set without invalidating the model. To this respect, the debate between observable past information (in the GARCH spirit) versus unobservable conditioning information (in the state-space spirit) is irrelevant. In this paper, we stress a square-root autoregressive stochastic volatility (SR-SARV) model which remains true to the GARCH paradigm of ARMA dynamics for squared innovations but weakens the GARCH structure in order to obtain required robustness properties with respect to various kinds of aggregation. It is shown that the lack of robustness of the usual GARCH setting is due to two very restrictive assumptions : perfect linear correlation between squared innovations and conditional variance on the one hand and linear relationship between the conditional variance of the future conditional variance and the squared conditional variance on the other hand. By relaxing these assumptions, thanks to a state-space setting, we obtain aggregation results without renouncing to the conditional variance concept (and related leverage effects), as it is the case for the recently suggested weak GARCH model which gets aggregation results by replacing conditional expectations by linear projections on symmetric past innovations. Moreover, unlike the weak GARCH literature, we are able to define multivariate models, including higher order dynamics and risk premiums (in the spirit of GARCH (p,p) and GARCH in mean) and to derive conditional moment restrictions well suited for statistical inference. Finally, we are able to characterize the exact relationships between our SR-SARV models (including higher order dynamics, leverage effect and in-mean effect), usual GARCH models and continuous time stochastic volatility models, so that previous results about aggregation of weak GARCH and continuous time GARCH modeling can be recovered in our framework.
Resumo:
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.
Resumo:
Un résumé en anglais est également disposnible.
Resumo:
Un résumé en anglais est également disponible.
Resumo:
Article publié avec l'autorisation de la Chambre des notaires du Québec et dans le cadre des cours de perfectionnement du notariat.
Resumo:
Un résumé en anglais est également disponible.
Resumo:
Article également disponible sur http://www.ircm.qc.ca/bioethique/obsgenetique
Resumo:
Un résumé en anglais est également disponible.
Resumo:
Since the advent of the Canadian Charter of Rights and Freedoms in 1982, Canadians courts have become bolder in the law-making entreprise, and have recently resorted to unwritten constitutional principles in an unprecedented fashion. In 1997, in Reference re Remuneration of Judges of the Provincial Court of Prince Edward Island, the Supreme Court of Canada found constitutional justification for the independence of provincially appointed judges in the underlying, unwritten principles of the Canadian Constitution. In 1998, in Reference re Secession of Quebec, the Court went even further in articulating those principles, and held that they have a substantive content which imposes significant limitations on government action. The author considers what the courts' recourse to unwritten principles means for the administrative process. More specifically, he looks at two important areas of uncertainty relating to those principles: their ambiguous normative force and their interrelatedness. He goes on to question the legitimacy of judicial review based on unwritten constitutional principles, and to critize the courts'recourse to such principles in decisions applying the principle of judicial independence to the issue of the remuneration of judges.
Resumo:
UANL
Resumo:
Un résumé en anglais est également disponible.
Resumo:
Un résumé en anglais est également disponible.
Resumo:
Reproduit avec l'autorisation de la Chambre des notaires du Québec.