984 resultados para Intellectual field
Resumo:
The effect of the test gas on the flow field around a 120degrees apex angle blunt cone has been investigated in a shock tunnel at a nominal Mach number of 5.75. The shock standoff distance around the blunt cone was measured by an electrical discharge technique using both carbon dioxide and air as test gases. The forebody laminar convective heat transfer to the blunt cone was measured with platinum thin-film sensors in both air and carbon dioxide environments. An increase of 10 to 15% in the measured heat transfer values was observed with carbon dioxide as the test gas in comparison to air. The measured thickness of the shock layer along the stagnation streamline was 3.57 +/- 0.17 mm in air and 3.29 +/- 0.26 mm in carbon dioxide. The computed thickness of the shock layer for air and carbon dioxide were 3.98 mm and 3.02 mm, respectively. The observed increase in the measured heat transfer rates in carbon dioxide compared to air was due to the higher density ratio across the bow shock wave and the reduced shock layer thickness.
Resumo:
Conventional thyristor-based load commutated inverter (LCI)-fed wound field synchronous machine operates only above a minimum speed that is necessary to develop enough back emf to ensure commutation. The drive is started and brought up to a speed of around 10-15% by a complex `dc link current pulsing' technique. During this process, the drive have problems such as pulsating torque, insufficient average starting torque, longer starting time, etc. In this regard a simple starting and low-speed operation scheme, by employing an auxiliary low-power voltage source inverter (VSI) between the LCI and the machine terminals, is presented in this study. The drive is started and brought up to a low speed of around 15% using the VSI alone with field oriented control. The complete control is then smoothly and dynamically transferred to the conventional LCI control. After the control transfer, the VSI is turned off and physically disconnected from the main circuit. The advantages of this scheme are smooth starting, complete control of torque and flux at starting and low speeds, less starting time, stable operation, etc. The voltage rating of the required VSI is very low of the order of 10-15%, whereas the current rating is dependent on the starting torque requirement of the load. The experimental results from a 15.8 hp LCI-fed wound field synchronous machine are given to demonstrate the scheme.
Resumo:
We develop a model of the solar dynamo in which, on the one hand, we follow the Babcock-Leighton approach to include surface processes, such as the production of poloidal field from the decay of active regions, and, on the other hand, we attempt to develop a mean field theory that can be studied in quantitative detail. One of the main challenges in developing such models is to treat the buoyant rise of the toroidal field and the production of poloidal field from it near the surface. A previous paper by Choudhuri, Schüssler, & Dikpati in 1995 did not incorporate buoyancy. We extend this model by two contrasting methods. In one method, we incorporate the generation of the poloidal field near the solar surface by Durney's procedure of double-ring eruption. In the second method, the poloidal field generation is treated by a positive α-effect concentrated near the solar surface coupled with an algorithm for handling buoyancy. The two methods are found to give qualitatively similar results.
Resumo:
The Hanuman langur is one of the most widely distributed and morphologically variable non-human primates in South Asia. Even though it has been extensively studied, the taxonomic status of this species remains unresolved due to incongruence between various classification schemes. This incongruence, we believe, is largely due to the use of plastic morphological characters such as coat color in classification. Additionally these classification schemes were largely based on reanalysis of the same set of museum specimens. To bring greater resolution in Hanuman langur taxonomy we undertook a field survey to study variation in external morphological characters among Hanuman langurs. The primary objective of this study is to ascertain the number of morphologically recognizable units (morphotypes) of Hanuman langur in peninsular India and to compare our field observations with published classification schemes. We typed five color-independent characters for multiple adults from various populations in South India. We used the presence-absence matrix of these characters to derive the pair-wise distance between individuals and used this to construct a neighbor-joining (NJ) tree. The resulting NJ tree retrieved six distinct clusters, which we assigned to different morphotypes. These morphotypes can be identified in the field by using a combination of five diagnostic characters. We determined the approximate distributions of these morphotypes by plotting the sampling locations of each morphotype on a map using GIS software. Our field observations are largely concordant with some of the earliest classification schemes, but are incongruent with recent classification schemes. Based on these results we recommend Hill (Ceylon Journal of Science, Colombo 21:277-305, 1939) and Pocock (Primates and carnivora (in part) (pp. 97-163). London: Taylor and Francis, 1939) classification schemes for future studies on Hanuman langurs.
Resumo:
We present a simplified theory of carrier backscattering coefficient in a twofold degenerate asymmetric bilayer graphene nanoribbon (BGN) under the application of a low static electric field. We show that for a highly asymmetric BGN(Delta = gamma), the density of states in the lower subband increases more that of the upper, in which Delta and gamma are the gap and the interlayer coupling constant, respectively. We also demonstrate that under the acoustic phonon scattering regime, the formation of two distinct sets of energy subbands signatures a quantized transmission coefficient as a function of ribbon width and provides an extremely low carrier reflection coefficient for a better Landauer conductance even at room temperature. The well-known result for the ballistic condition has been obtained as a special case of the present analysis under certain limiting conditions which forms an indirect validation of our theoretical formalism.
Resumo:
DC electric field induced dielectric properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) thin films were studied as a function of frequency at different temperatures. It was observed that the dielectric constant (ε) and dissipation factor (tanδ) were decreased in presence of bias field. The temperature of dielectric maxima was found to increase with increasing bias level. The low temperature (
Resumo:
We investigate the ground state of interacting spin-1/2 fermions in three dimensions at a finite density (rho similar to k(F)(3)) in the presence of a uniform non-Abelian gauge field. The gauge-field configuration (GFC) described by a vector lambda equivalent to (lambda(x),lambda(y),lambda(z)), whose magnitude lambda determines the gauge coupling strength, generates a generalized Rashba spin-orbit interaction. For a weak attractive interaction in the singlet channel described by a small negative scattering length (k(F)vertical bar a(s)vertical bar less than or similar to 1), the ground state in the absence of the gauge field (lambda = 0) is a BCS (Bardeen-Cooper-Schrieffer) superfluid with large overlapping pairs. With increasing gauge-coupling strength, a non-Abelian gauge field engenders a crossover of this BCS ground state to a BEC (Bose-Einstein condensate) of bosons even with a weak attractive interaction that fails to produce a two-body bound state in free vacuum (lambda = 0). For large gauge couplings (lambda/k(F) >> 1), the BEC attained is a condensate of bosons whose properties are solely determined by the Rashba gauge field (and not by the scattering length so long as it is nonzero)-we call these bosons ``rashbons.'' In the absence of interactions (a(s) = 0(-)), the shape of the Fermi surface of the system undergoes a topological transition at a critical gauge coupling lambda(T). For high-symmetry GFCs we show that the crossover from the BCS superfluid to the rashbon BEC occurs in the regime of lambda near lambda(T). In the context of cold atomic systems, these results make an interesting suggestion of obtaining BCS-BEC crossover through a route other than tuning the interaction between the fermions.
Resumo:
Recent results and data suggest that high magnetic fields in neutron stars (NS) strongly affect the characteristics (radius, mass) of the star. Such stars are even separated into a class known as magnetars, for which the surface magnetic field is greater than 10(14) G. In this work we discuss the effect of such a high magnetic field on the phase transition of a NS to a quark star (QS). We study the effect of magnetic field on the transition from NS to QS including the magnetic-field effect in the equation of state (EoS). The inclusion of the magnetic field increases the range of baryon number densities for which the flow velocities of the matter in the respective phase are finite. The magnetic field helps in initiation of the conversion process. The velocity of the conversion front, however, decreases due to the presence of the magnetic field, as the presence of the magnetic field reduces the effective pressure (P). The magnetic field of the star is decreased by the conversion process, and the resultant QS has lower magnetic field than the initial NS.
Resumo:
The unsteady free convection flow over an infinite vertical porous plate, which moves with time-dependent velocity in an ambient fluid, has been studied. The effects of the magnetic field and Hall current are included in the analysis. The buoyancy forces arise due to both the thermal and mass diffusion. The partial differential equations governing the flow have been solved numerically using both the implicit finite difference scheme and the difference-differential method. For the steady case, analytical solutions have also been obtained. The effect of time variation on the skin friction, heat transfer and mass transfer is very significant. Suction increases the skin friction coefficient in the primary flow, and also the Nusselt and Sherwood numbers, but the skin friction coefficient in the secondary flow is reduced. The effect of injection is opposite to that of suction. The buoyancy force, injection and the Hall parameter induce an overshoot in the velocity profiles in the primary flow which changes the velocity gradient from a negative to a positive value, but the magnetic field and suction reduce this velocity overshoot.
Resumo:
An analysis is developed to study the unsteady mixed convection flow over a vertical cone rotating in an ambient fluid with a time-dependent angular velocity in the presence of a magnetic field. The coupled nonlinear partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The local skin friction coefficients in the tangential and azimuthal directions and the local Nusselt number increase with the time when the angular velocity of the-cone increases, but the reverse trend is observed for decreasing angular velocity. However, these are not mirror reflection of each other. The magnetic field reduces the skin friction coefficient in the tangential direction and also the Nusselt number, but it increases the skin friction coefficient in the azimuthal direction. The skin friction coefficients and the Nusselt number increase with the buoyancy force.
Resumo:
Electroluminescent zinc sulfide doped with copper and chloride (ZnS:Cu, Cl) powder was heated to 400°C and rapidly quenched to room temperature. Comparison between the quenched and non-quenched phosphors using synchrotron radiation X-ray powder diffraction (XRPD) (λ = 0.828692 Å) and X-ray absorption spectroscopy (XAS) was made. XRPD shows that the expected highly faulted structure is observed with excellent resolution out to 150° 2θ (or to (12 2 2) of the sphalerite phase). The quenched sample compared to the unheated sample shows a large change in peak ratios between 46.7° and 46.9°, which is thought to correspond to the wurtzite (0 0 6), (0 3 2) and sphalerite (3 3 3)/(5 1 1) peaks. Hence, a large proportion of this sphalerite diffraction is lost from the material upon rapid quenching, but not when the material is allowed to cool slowly. The Zn K-edge XAS data indicate that the crystalline structures are indistinguishable using this technique, but do give an indication that the electronic structure has altered due to changing intensity of the white line. It is noted that the blue electroluminescence (EL) emission bands are lost upon quenching: however, a large amount of total EL emission intensity is also removed, which is consistent with our findings. We report the XRPD of a working alternating-current electroluminescence device in the synchrotron X-ray beam, which exhibits a new diffraction pattern when the device is powered in an AC field even though the phosphor is fixed in the binder. Significantly, only a few crystals are required to yield the diffraction data because of the high flux X-ray source. These in panel data show multiple sharp diffraction lines spread out under the region, where capillary data show broad diffraction intensity indicating that the phosphor powder is comprised of unique crystals, each having different structures.
Resumo:
Molecular wires of charge transfer molecules were formed by co-evaporating the 7 7 8 8-Tetracyanoquinodimethane [TCNQ] (acceptor) and Tetrathiafulvalene [TTF] (donor) molecules across prefabricated metal electrodes. Molecular wires of TTF TCNQ were also formed by evaporating single complex of TTF:TCNQ across prefabricated metal electrodes The prefabricated metal electrodes were made using electron beam lithography on SiO2 and glass cover slip substrates. Even though TTF: TCNQ wires grown from both co-evaporation and evaporation techniques show semiconductor like behavior in temperature dependence of resistance they show different activation energies due the difference in stoichiometry of TTF and TCNQ.
Resumo:
Load commutated inverter (LCI)-fed wound field synchronous motor drives are used for medium-voltage high-power drive applications. This drive suffers from drawbacks such as complex starting procedure, sixth harmonic torque pulsations, quasi square wave motor current, notches in the terminal voltages, etc. In this paper, a hybrid converter circuit, consisting of an LCI and a voltage source inverter (VSI), is proposed, which can be a universal high-power converter solution for wound field synchronous motor drives. The proposed circuit, with the addition of a current-controlled VSI, overcomes nearly all of the shortcomings present in the conventional LCI-based system besides providing many additional advantages. In the proposed drive, the motor voltage and current are always sinusoidal even with the LCI switching at the fundamental frequency. The performance of the drive is demonstrated with detailed experimental waveforms from a 15.8-hp salient pole wound field synchronous machine. Finally, a brief description of the control scheme used for the proposed circuit is given.
Resumo:
Transmission of bulk power at high voltages over very long distances has become very imperative. At present, throughout the globe, this task has been mostly performed by overhead transmission lines. The dual task of mechanically supporting and electrically isolating the live phase conductors from the support tower is performed by string insulators. Whether in clean condition or under polluted conditions, the electrical stress distribution along the insulators governs the possible flashover, which is quite detrimental to the system. However, a reliable data on stress distribution in commonly employed string insulators are rather scarce. Considering this, the present work has made an attempt to study accurately, the field distribution in 220 kV strings for six different types of porcelain/ceramic insulators (Normal and Antifog discs) used for high voltage transmission. The surface charge simulation method is employed for the required field computation. Voltage and electric stress distribution is deduced and compared across different types of discs. A comparison on normalised surface resistance, which is an indicator for the stress concentration under polluted condition, is also attempted.