928 resultados para Instruments
Resumo:
Environmental data usually include measurements, such as water quality data, which fall below detection limits, because of limitations of the instruments or of certain analytical methods used. The fact that some responses are not detected needs to be properly taken into account in statistical analysis of such data. However, it is well-known that it is challenging to analyze a data set with detection limits, and we often have to rely on the traditional parametric methods or simple imputation methods. Distributional assumptions can lead to biased inference and justification of distributions is often not possible when the data are correlated and there is a large proportion of data below detection limits. The extent of bias is usually unknown. To draw valid conclusions and hence provide useful advice for environmental management authorities, it is essential to develop and apply an appropriate statistical methodology. This paper proposes rank-based procedures for analyzing non-normally distributed data collected at different sites over a period of time in the presence of multiple detection limits. To take account of temporal correlations within each site, we propose an optimal linear combination of estimating functions and apply the induced smoothing method to reduce the computational burden. Finally, we apply the proposed method to the water quality data collected at Susquehanna River Basin in United States of America, which dearly demonstrates the advantages of the rank regression models.
Resumo:
Objective To discuss generalized estimating equations as an extension of generalized linear models by commenting on the paper of Ziegler and Vens "Generalized Estimating Equations. Notes on the Choice of the Working Correlation Matrix". Methods Inviting an international group of experts to comment on this paper. Results Several perspectives have been taken by the discussants. Econometricians have established parallels to the generalized method of moments (GMM). Statisticians discussed model assumptions and the aspect of missing data Applied statisticians; commented on practical aspects in data analysis. Conclusions In general, careful modeling correlation is encouraged when considering estimation efficiency and other implications, and a comparison of choosing instruments in GMM and generalized estimating equations, (GEE) would be worthwhile. Some theoretical drawbacks of GEE need to be further addressed and require careful analysis of data This particularly applies to the situation when data are missing at random.
Resumo:
Miniaturization of analytical instrumentation is attracting growing interest in response to the explosive demand for rapid, yet sensitive analytical methods and low-cost, highly automated instruments for pharmaceutical and bioanalyses and environmental monitoring. Microfabrication technology in particular, has enabled fabrication of low-cost microdevices with a high degree of integrated functions, such as sample preparation, chemical reaction, separation, and detection, on a single microchip. These miniaturized total chemical analysis systems (microTAS or lab-on-a-chip) can also be arrayed for parallel analyses in order to accelerate the sample throughput. Other motivations include reduced sample consumption and waste production as well as increased speed of analysis. One of the most promising hyphenated techniques in analytical chemistry is the combination of a microfluidic separation chip and mass spectrometer (MS). In this work, the emerging polymer microfabrication techniques, ultraviolet lithography in particular, were exploited to develop a capillary electrophoresis (CE) separation chip which incorporates a monolithically integrated electrospray ionization (ESI) emitter for efficient coupling with MS. An epoxy photoresist SU-8 was adopted as structural material and characterized with respect to its physicochemical properties relevant to chip-based CE and ESI/MS, namely surface charge, surface interactions, heat transfer, and solvent compatibility. As a result, SU-8 was found to be a favorable material to substitute for the more commonly used glass and silicon in microfluidic applications. In addition, an infrared (IR) thermography was introduced as direct, non-intrusive method to examine the heat transfer and thermal gradients during microchip-CE. The IR data was validated through numerical modeling. The analytical performance of SU-8-based microchips was established for qualitative and quantitative CE-ESI/MS analysis of small drug compounds, peptides, and proteins. The CE separation efficiency was found to be similar to that of commercial glass microchips and conventional CE systems. Typical analysis times were only 30-90 s per sample indicating feasibility for high-throughput analysis. Moreover, a mass detection limit at the low-attomole level, as low as 10E+5 molecules, was achieved utilizing MS detection. The SU-8 microchips developed in this work could also be mass produced at low cost and with nearly identical performance from chip to chip. Until this work, the attempts to combine CE separation with ESI in a chip-based system, amenable to batch fabrication and capable of high, reproducible analytical performance, have not been successful. Thus, the CE-ESI chip developed in this work is a substantial step toward lab-on-a-chip technology.
Resumo:
Miniaturized analytical devices, such as heated nebulizer (HN) microchips studied in this work, are of increasing interest owing to benefits like faster operation, better performance, and lower cost relative to conventional systems. HN microchips are microfabricated devices that vaporize liquid and mix it with gas. They are used with low liquid flow rates, typically a few µL/min, and have previously been utilized as ion sources for mass spectrometry (MS). Conventional ion sources are seldom feasible at such low flow rates. In this work HN chips were developed further and new applications were introduced. First, a new method for thermal and fluidic characterization of the HN microchips was developed and used to study the chips. Thermal behavior of the chips was also studied by temperature measurements and infrared imaging. An HN chip was applied to the analysis of crude oil – an extremely complex sample – by microchip atmospheric pressure photoionization (APPI) high resolution mass spectrometry. With the chip, the sample flow rate could be reduced significantly without loss of performance and with greatly reduced contamination of the MS instrument. Thanks to its suitability to high temperature, microchip APPI provided efficient vaporization of nonvolatile compounds in crude oil. The first microchip version of sonic spray ionization (SSI) was presented. Ionization was achieved by applying only high (sonic) speed nebulizer gas to an HN microchip. SSI significantly broadens the range of analytes ionizable with the HN chips, from small stable molecules to labile biomolecules. The analytical performance of the microchip SSI source was confirmed to be acceptable. The HN microchips were also used to connect gas chromatography (GC) and capillary liquid chromatography (LC) to MS, using APPI for ionization. Microchip APPI allows efficient ionization of both polar and nonpolar compounds whereas with the most popular electrospray ionization (ESI) only polar and ionic molecules are ionized efficiently. The combination of GC with MS showed that, with HN microchips, GCs can easily be used with MS instruments designed for LC-MS. The presented analytical methods showed good performance. The first integrated LC–HN microchip was developed and presented. In a single microdevice, there were structures for a packed LC column and a heated nebulizer. Nonpolar and polar analytes were efficiently ionized by APPI. Ionization of nonpolar and polar analytes is not possible with previously presented chips for LC–MS since they rely on ESI. Preliminary quantitative performance of the new chip was evaluated and the chip was also demonstrated with optical detection. A new ambient ionization technique for mass spectrometry, desorption atmospheric pressure photoionization (DAPPI), was presented. The DAPPI technique is based on an HN microchip providing desorption of analytes from a surface. Photons from a photoionization lamp ionize the analytes via gas-phase chemical reactions, and the ions are directed into an MS. Rapid analysis of pharmaceuticals from tablets was successfully demonstrated as an application of DAPPI.
Resumo:
Poor pharmacokinetics is one of the reasons for the withdrawal of drug candidates from clinical trials. There is an urgent need for investigating in vitro ADME (absorption, distribution, metabolism and excretion) properties and recognising unsuitable drug candidates as early as possible in the drug development process. Current throughput of in vitro ADME profiling is insufficient because effective new synthesis techniques, such as drug design in silico and combinatorial synthesis, have vastly increased the number of drug candidates. Assay technologies for larger sets of compounds than are currently feasible are critically needed. The first part of this work focused on the evaluation of cocktail strategy in studies of drug permeability and metabolic stability. N-in-one liquid chromatography-tandem mass spectrometry (LC/MS/MS) methods were developed and validated for the multiple component analysis of samples in cocktail experiments. Together, cocktail dosing and LC/MS/MS were found to form an effective tool for increasing throughput. First, cocktail dosing, i.e. the use of a mixture of many test compounds, was applied in permeability experiments with Caco-2 cell culture, which is a widely used in vitro model for small intestinal absorption. A cocktail of 7-10 reference compounds was successfully evaluated for standardization and routine testing of the performance of Caco-2 cell cultures. Secondly, cocktail strategy was used in metabolic stability studies of drugs with UGT isoenzymes, which are one of the most important phase II drug metabolizing enzymes. The study confirmed that the determination of intrinsic clearance (Clint) as a cocktail of seven substrates is possible. The LC/MS/MS methods that were developed were fast and reliable for the quantitative analysis of a heterogenous set of drugs from Caco-2 permeability experiments and the set of glucuronides from in vitro stability experiments. The performance of a new ionization technique, atmospheric pressure photoionization (APPI), was evaluated through comparison with electrospray ionization (ESI), where both techniques were used for the analysis of Caco-2 samples. Like ESI, also APPI proved to be a reliable technique for the analysis of Caco-2 samples and even more flexible than ESI because of the wider dynamic linear range. The second part of the experimental study focused on metabolite profiling. Different mass spectrometric instruments and commercially available software tools were investigated for profiling metabolites in urine and hepatocyte samples. All the instruments tested (triple quadrupole, quadrupole time-of-flight, ion trap) exhibited some good and some bad features in searching for and identifying of expected and non-expected metabolites. Although, current profiling software is helpful, it is still insufficient. Thus a time-consuming largely manual approach is still required for metabolite profiling from complex biological matrices.
Resumo:
A locked high-pressure cell with working pressure range up to 10 kbars suitable for low-temperature studies to 77 K has been described. It can be used for both EPR and NMR studies of single crystals (and other solid samples). The high-pressure seal and all other aspects of the cell remain the same for either application. Only a change of the bottom plug is required for a switch from a nuclear-magnetic-resonance (NMR) to an electron-paramagnetic-resonance (EPR) experiment. Details of the procedure for the calibration of pressure inside the cell at various temperatures are discussed. The performance of the cell in EPR (Cr3+ion) and NMR (27Al nucleus) studies is reported.
Resumo:
An inexpensive and simple circuit to aid the direct measurement of majority carrier capture cross sections of impurity levels in the band gap of a semiconductor by the variable width filling pulse technique is presented. With proper synchronisation, during the period of application of the pulse, the device is disconnected from the capacitance meter to avoid distortion of the pulse and is reconnected again to the meter to record the emission transient. Modes of operation include manual triggering for long emission transients, repetitive triggering for isothermal and DLTS measurements and the DLTS mode which is to be used with signal analysers that already provide a synchronising pulse for disconnection.
Resumo:
The subject of the study is the classical Latin concept 'mundus muliebris', usually translated simply as women’s toiletry items. The task of the research is, on one hand, to find a more accurate and comprehensive literary definition for the concept as used in the early Imperial period, and on the other, to examine whether it is possible to find corresponding groupings of material objects among the finds from Pompeian houses destroyed by the eruption of Mount Vesuvius in AD 79. The study is based on two different bodies of evidence, literary and material, and consequently uses two independent methods of research. In the philological part of the study, all occurrences of the concept 'mundus muliebris' in classical Latin texts were identified and analysed in their proper literary context, paying special attention to information about the nature of the objects included (name, owner, quantity, value, location in the house). On the basis of this analysis, mirrors were chosen as the key elements of the archaeological research, being ̶ hypothetically ̶ the most probable objects to be found among any extant 'mundus muliebris' contexts in Pompeian houses. In the archaeological part of the study, all mirrors deposited in the Archaeological Storerooms of Pompeii, mostly unpublished, were examined, together with their original find contexts. For more detailed documentation, classification, as well as quantitative and functional analysis, the fifty-nine best preserved household or shop contexts were chosen. Among these contexts, only a few ‘ideal’ groups closely corresponding to the literary definitions were found. However, in most cases a functional artifact pattern of toiletry items could indeed be found grouped together with the mirror. The arrangement of the contexts in the domestic space also revealed a clear pattern. Firstly, the contexts consistently seem to be found in the place of storage, inside locked boxes, not in the place of use. Secondly, they show that for the storage of such objects small closed rooms flanking the main entrance of the house were preferred. Culturally, 'mundus muliebris' can be described as a very complex multi-layered concept intimately interrelated with the female gender, an instrument of its bodily creation and a symbol of its nature. Concretely, it has at its core mirrors and instruments for the care of skin and hair, and includes, in more technical definitions, washing equipment as well. In the Roman domus, lacking specific women’s quarters, this box containing toiletries and other personal objects could be defined as the true, although mobile, private space of the household’s female members.
Resumo:
A set of coils has been designed and constructed for generating magnetic field gradients for a Faraday magnetometer. We have obtained a gradient of magnitude -1 1 kOe m-' (8.75 x lo5 A m-') in an air gap of 42 mm for a current of 12 A passing through the coils.
Resumo:
The aim of this research was to develop a set of reliable, valid preparedness metrics, built around a comprehensive framework for assessing hospital preparedness. This research used a combination of qualitative and quantitative methods which included interview and a Delphi study as well as a survey of hospitals in the Sichuan Province of China. The resultant framework is constructed around the stages of disaster management and includes nine key elements. Factor Analysis identified four contributing factors. The comparison of hospitals' preparedness using these four factors, revealed that tertiary-grade, teaching and general hospitals performed better than secondary-grade, non-teaching and non-general hospitals.
Resumo:
It is shown that cholesteric liquid crystal mixtures can be used as convenient solvents in NMR experiments for the determination of molecular structure. The advantages of such solvents are pointed out. The application is demonstrated for acetonitrile; the value for the HCH bond angle thus determined is 108.8°.
Resumo:
Internationally, marine biodiversity conservation objectives are having an increasing influence on the management of commercial fisheries. While this is largely being implemented through Marine Protected Areas (MPAs) other management measures, such as market based instruments (MBIs), have proved to be effective at managing target species catch in fisheries and reducing environmental impacts in industries such as mining and tourism. Market-based management measures aim to mitigate the impacts of activities by better aligning the incentives their participants face with the objectives of management, changing their behavior as a consequence. In this paper, we review the potential of MBIs as management tools to mitigate undesirable environmental impacts associated with commercial fishing. Where they exist, examples of previous applications are described and the factors that influence their applicability and effectiveness are discussed. Several fishing methods and impacts are considered and suggest that whilst no single approach is most appropriate in all circumstances either replacing or complementing existing management arrangements with MBIs has the potential to improve environmental performance. This has a number of implications. From the environmental perspective they should enable levels of undesirable impacts such as damage to sensitive habitat or the bycatch of protected species of turtles, marine mammals, and seabirds to be reduced. The increased flexibility MBIs allow industry when developing solutions also has the potential to reduce costs to both the industry and managers, improving the cost-effectiveness of regulation as a result. Further, in the increasingly relevant case of MPAs the need for publicly funded compensation, often paid to industry when vessels are excluded from grounds, may also be significantly reduced if improved environmental performance makes it possible for some industry members to continue operating.
Resumo:
Titled "An Essay on Antimetaphoric Resistance", the dissertation investigates what is here being called "Counter-figures": a term which has in this context a certain variety of applications. Any other-than-image or other-than-figure, anything that cannot be exhausted by figuration (and that is, more or less, anything at all, except perhaps the reproducible images and figures themselves) can be considered "counter-figurative" with regard to the formation of images and figures, ideas and schemas, "any graven image, or any likeness of any thing". Singularity and radical alterity, as well as temporality and its peculiar mode of uniqueness are key issues here, and an ethical dimension is implied by, or intertwined with, the aesthetic. In terms borrowed from Paul Celan's "Meridian" speech, poetry may "allow the most idiosyncratic quality of the Other, its time, to participate in the dialogue". This connection between singularity, alterity and temporality is one of the reasons why Celan so strongly objects to the application of the traditional concept of metaphor to poetry. As Celan says, "carrying over [übertragen]" by metaphor may imply an unwillingness to "bear with [mittragen]" and to "endure [ertragen]" the poem. The thesis is divided into two main parts. The first consists of five distinct prolegomena which all address the mentioned variety of applications of the term "counter-figures", and especially the rejection or critique of either metaphor (by Aristotle, for instance) or the concept of metaphor (defined by Aristotle, and sometimes deemed "anti-poetic" by both theorists and poets). Even if we restrict ourselves to the traditional rhetorico-poetical terms, we may see how, for instance, metonymy can be a counter-figure for metaphor, allegory for symbol, and irony for any single trope or for any piece of discourse at all. The limits of figurality may indeed be located at these points of intersection between different types of tropes or figures, and even between figures or tropes and the "non-figurative trope" or "pseudo-figure" called catachresis. The second part, following on from the open-ended prolegomena, concentrates on Paul Celan's poetry and poetics. According to Celan, true poetry is "essentially anti-metaphoric". I argue that inasmuch as we are willing to pay attention to the "will" of the poetic images themselves (the tropes and metaphors in a poem) to be "carried ad absurdum", as Celan invites us to do, we may find alternative ways of reading poetry and approaching its "secret of the encounter", precisely when the traditional rhetorical instruments, and especially the notion of metaphor, become inapplicable or suspicious — and even where they still seem to impose themselves.
Resumo:
Spectral data were collected of intact and ground kernels using 3 instruments (using Si-PbS, Si, and InGaAs detectors), operating over different areas of the spectrum (between 400 and 2500 nm) and employing transmittance, interactance, and reflectance sample presentation strategies. Kernels were assessed on the basis of oil and water content, and with respect to the defect categories of insect damage, rancidity, discoloration, mould growth, germination, and decomposition. Predictive model performance statistics for oil content models were acceptable on all instruments (R2 > 0.98; RMSECV < 2.5%, which is similar to reference analysis error), although that for the instrument employing reflectance optics was inferior to models developed for the instruments employing transmission optics. The spectral positions for calibration coefficients were consistent with absorbance due to the third overtones of CH2 stretching. Calibration models for moisture content in ground samples were acceptable on all instruments (R2 > 0.97; RMSECV < 0.2%), whereas calibration models for intact kernels were relatively poor. Calibration coefficients were more highly weighted around 1360, 740 and 840 nm, consistent with absorbance due to overtones of O-H stretching and combination. Intact kernels with brown centres or rancidity could be discriminated from each other and from sound kernels using principal component analysis. Part kernels affected by insect damage, discoloration, mould growth, germination, and decomposition could be discriminated from sound kernels. However, discrimination among these defect categories was not distinct and could not be validated on an independent set. It is concluded that there is good potential for a low cost Si photodiode array instrument to be employed to identify some quality defects of intact macadamia kernels and to quantify oil and moisture content of kernels in the process laboratory and for oil content in-line. Further work is required to examine the robustness of predictive models across different populations, including growing districts, cultivars and times of harvest.