861 resultados para Input-output
Resumo:
Costs of purchasing new piglets and of feeding them until slaughter are the main variable expenditures in pig fattening. They both depend on slaughter intensity, the nature of feeding patterns and the technological constraints of pig fattening, such as genotype. Therefore, it is of interest to examine the effect of production technology and changes in input and output prices on feeding and slaughter decisions. This study examines the problem by using a dynamic programming model that links genetic characteristics of a pig to feeding decisions and the timing of slaughter and takes into account how these jointly affect the quality-adjusted value of a carcass. The model simulates the growth mechanism of a pig under optional feeding and slaughter patterns and then solves the optimal feeding and slaughter decisions recursively. The state of nature and the genotype of a pig are known in the analysis. The main contribution of this study is the dynamic approach that explicitly takes into account carcass quality while simultaneously optimising feeding and slaughter decisions. The method maximises the internal rate of return to the capacity unit. Hence, the results can have vital impact on competitiveness of pig production, which is known to be quite capital-intensive. The results suggest that producer can significantly benefit from improvements in the pig's genotype, because they improve efficiency of pig production. The annual benefits from obtaining pigs of improved genotype can be more than €20 per capacity unit. The annual net benefits of animal breeding to pig farms can also be considerable. Animals of improved genotype can reach optimal slaughter maturity quicker and produce leaner meat than animals of poor genotype. In order to fully utilise the benefits of animal breeding, the producer must adjust feeding and slaughter patterns on the basis of genotype. The results suggest that the producer can benefit from flexible feeding technology. The flexible feeding technology segregates pigs into groups according to their weight, carcass leanness, genotype and sex and thereafter optimises feeding and slaughter decisions separately for these groups. Typically, such a technology provides incentives to feed piglets with protein-rich feed such that the genetic potential to produce leaner meat is fully utilised. When the pig approaches slaughter maturity, the share of protein-rich feed in the diet gradually decreases and the amount of energy-rich feed increases. Generally, the optimal slaughter weight is within the weight range that pays the highest price per kilogram of pig meat. The optimal feeding pattern and the optimal timing of slaughter depend on price ratios. Particularly, an increase in the price of pig meat provides incentives to increase the growth rates up to the pig's biological maximum by increasing the amount of energy in the feed. Price changes and changes in slaughter premium can also have large income effects. Key words: barley, carcass composition, dynamic programming, feeding, genotypes, lean, pig fattening, precision agriculture, productivity, slaughter weight, soybeans
Resumo:
NeEstimator v2 is a completely revised and updated implementation of software that produces estimates of contemporary effective population size, using several different methods and a single input file. NeEstimator v2 includes three single-sample estimators (updated versions of the linkage disequilibrium and heterozygote-excess methods, and a new method based on molecular coancestry), as well as the two-sample (moment-based temporal) method. New features include the following: (i) an improved method for accounting for missing data; (ii) options for screening out rare alleles; (iii) confidence intervals for all methods; (iv) the ability to analyse data sets with large numbers of genetic markers (10000 or more); (v) options for batch processing large numbers of different data sets, which will facilitate cross-method comparisons using simulated data; and (vi) correction for temporal estimates when individuals sampled are not removed from the population (Plan I sampling). The user is given considerable control over input data and composition, and format of output files. The freely available software has a new JAVA interface and runs under MacOS, Linux and Windows.
Resumo:
Phosphorus is a nutrient needed in crop production. While boosting crop yields it may also accelerate eutrophication in the surface waters receiving the phosphorus runoff. The privately optimal level of phosphorus use is determined by the input and output prices, and the crop response to phosphorus. Socially optimal use also takes into account the impact of phosphorus runoff on water quality. Increased eutrophication decreases the economic value of surface waters by Deteriorating fish stocks, curtailing the potential for recreational activities and by increasing the probabilities of mass algae blooms. In this dissertation, the optimal use of phosphorus is modelled as a dynamic optimization problem. The potentially plant available phosphorus accumulated in soil is treated as a dynamic state variable, the control variable being the annual phosphorus fertilization. For crop response to phosphorus, the state variable is more important than the annual fertilization. The level of this state variable is also a key determinant of the runoff of dissolved, reactive phosphorus. Also the loss of particulate phosphorus due to erosion is considered in the thesis, as well as its mitigation by constructing vegetative buffers. The dynamic model is applied for crop production on clay soils. At the steady state, the analysis focuses on the effects of prices, damage parameterization, discount rate and soil phosphorus carryover capacity on optimal steady state phosphorus use. The economic instruments needed to sustain the social optimum are also analyzed. According to the results the economic incentives should be conditioned on soil phosphorus values directly, rather than on annual phosphorus applications. The results also emphasize the substantial effects the differences in varying discount rates of the farmer and the social planner have on optimal instruments. The thesis analyzes the optimal soil phosphorus paths from its alternative initial levels. It also examines how erosion susceptibility of a parcel affects these optimal paths. The results underline the significance of the prevailing soil phosphorus status on optimal fertilization levels. With very high initial soil phosphorus levels, both the privately and socially optimal phosphorus application levels are close to zero as the state variable is driven towards its steady state. The soil phosphorus processes are slow. Therefore, depleting high phosphorus soils may take decades. The thesis also presents a methodologically interesting phenomenon in problems of maximizing the flow of discounted payoffs. When both the benefits and damages are related to the same state variable, the steady state solution may have an interesting property, under very general conditions: The tail of the payoffs of the privately optimal path as well as the steady state may provide a higher social welfare than the respective tail of the socially optimal path. The result is formalized and an applied to the created framework of optimal phosphorus use.
Resumo:
A rectangular universal cellular array consisting of cells having three inputs and one output is described. This array is based on the Reed-Muller canonical expansion of a switching function. Although the total number of external input pins required in this array is the same as that of a rectangular array proposed in the literature, the number of cells is very much less.
Resumo:
In this paper, we describe our investigation of the cointegration and causal relationships between energy consumption and economic output in Australia over a period of five decades. The framework used in this paper is the single-sector aggregate production function, which is the first comprehensive approach used in an Australian study of this type to include energy, capital and labour as separate inputs of production. The empirical evidence points to a cointegration relationship between energy and output and implies that energy is an important variable in the cointegration space, as are conventional inputs capital and labour. We also find some evidence of bidirectional causality between GDP and energy use. Although the evidence of causality from energy use to GDP was relatively weak when using the thermal aggregate of energy use, once energy consumption was adjusted for energy quality, we found strong evidence of Granger causality from energy use to GDP in Australia over the investigated period. The results are robust, irrespective of the assumptions of linear trends in the cointegration models, and are applicable for different econometric approaches.
Resumo:
In this paper we describe our investigation of the role of investment in information technology (IT) on economic output and productivity in Australia over a period of about four decades. The framework used in this paper is the aggregate production function, where IT capital is considered as a separate input of production along with non-IT capital and labour. The empirical results from the study indicate the evidence of robust technical progress in the Australian economy in the 1990s. IT capital had a significant impact on output, labour productivity and technical progress in the 1990s. In recent years, however, the contribution of IT capital on output and labour productivity has slowed down. Regaining the IT capital productivity therefore remains as a key challenge for Australia, especially in the context of greater IT investment in the future.
Resumo:
This paper investigates the cointegration and causal relationships between Information and Communication Technology (ICT) and economic output in Australia using data for about five decades. The framework used in this paper is the single-sector aggregate production function, which is the first comprehensive approach of this kind to include ICT and non-ICT capital and other factors to examine long-run Granger causality. The empirical evidence points to a cointegration relationship between ICT capital and output, and implies that ICT capital Granger causes economic output and multifactor productivity, as does non-ICT capital.
Resumo:
The study investigates the long-run and dynamic relationships between energy consumption and output in Australia using a multivariate cointegration and causality framework. Using both Engle-Granger and Johansen cointegration approaches, the study finds that energy consumption and real Gross Domestic Product are cointegrated. The Granger causality tests suggest bidirectional Granger causality between energy consumption and real GDP, and Granger endogeineity in the system. Since the energy sector largely contributes to carbon emissions in Australia, we suggest that direct measures to reduce carbon by putting constraints on the energy consumption would pose significant economic costs for the Australian economy.
Resumo:
In this paper the response of a gyrostabilized platform subjected to a transient torque has been analyzed by deliberately introducing non-linearity into the command of the servomotor. The resulting third-order non-linear differential equation has been solved by using a transformation technique involving the displacement variable. The condition under which platform oscillations may grow with time or die with time are important from the point of view of platform stabilization. The effect of deliberate addition of non-linearity with a view to achieving the ideal response—that is, to bring the platform back to its equilibrium position with as few oscillations as possible—has been investigated. The conditions under which instability may set in on account of the small transient input and small non-linearity has also been discussed. The analysis is illustrated by means of a numerical example. The results of analysis are compared with numerical solutions obtained on a digital computer.
Resumo:
A new family of low-power logic circuits, employing a multiemitter transistor input circuit and a modified complementary p-n-p n-p-n output stage, having almost the same performance as standard TTL circuits and suitable for IC use, is reported in this correspondence.
Resumo:
This thesis studies empirically whether measurement errors in aggregate production statistics affect sentiment and future output. Initial announcements of aggregate production are subject to measurement error, because many of the data required to compile the statistics are produced with a lag. This measurement error can be gauged as the difference between the latest revised statistic and its initial announcement. Assuming aggregate production statistics help forecast future aggregate production, these measurement errors are expected to affect macroeconomic forecasts. Assuming agents’ macroeconomic forecasts affect their production choices, these measurement errors should affect future output through sentiment. This thesis is primarily empirical, so the theoretical basis, strategic complementarity, is discussed quite briefly. However, it is a model in which higher aggregate production increases each agent’s incentive to produce. In this circumstance a statistical announcement which suggests aggregate production is high would increase each agent’s incentive to produce, thus resulting in higher aggregate production. In this way the existence of strategic complementarity provides the theoretical basis for output fluctuations caused by measurement mistakes in aggregate production statistics. Previous empirical studies suggest that measurement errors in gross national product affect future aggregate production in the United States. Additionally it has been demonstrated that measurement errors in the Index of Leading Indicators affect forecasts by professional economists as well as future industrial production in the United States. This thesis aims to verify the applicability of these findings to other countries, as well as study the link between measurement errors in gross domestic product and sentiment. This thesis explores the relationship between measurement errors in gross domestic production and sentiment and future output. Professional forecasts and consumer sentiment in the United States and Finland, as well as producer sentiment in Finland, are used as the measures of sentiment. Using statistical techniques it is found that measurement errors in gross domestic product affect forecasts and producer sentiment. The effect on consumer sentiment is ambiguous. The relationship between measurement errors and future output is explored using data from Finland, United States, United Kingdom, New Zealand and Sweden. It is found that measurement errors have affected aggregate production or investment in Finland, United States, United Kingdom and Sweden. Specifically, it was found that overly optimistic statistics announcements are associated with higher output and vice versa.
Resumo:
This paper addresses an output feedback control problem for a class of networked control systems (NCSs) with a stochastic communication protocol. Under the scenario that only one sensor is allowed to obtain the communication access at each transmission instant, a stochastic communication protocol is first defined, where the communication access is modelled by a discrete-time Markov chain with partly unknown transition probabilities. Secondly, by use of a network-based output feedback control strategy and a time-delay division method, the closed-loop system is modeled as a stochastic system with multi time-varying delays, where the inherent characteristic of the network delay is well considered to improve the control performance. Then, based on the above constructed stochastic model, two sufficient conditions are derived for ensuring the mean-square stability and stabilization of the system under consideration. Finally, two examples are given to show the effectiveness of the proposed method.
Resumo:
The departures of the operational amplifiers (OA's) from the ideal performance and their effect on VCV's in the inverting and noninverting mode are discussed. It is found that for the same ideal gain, the bandwidths for the inverting and noninverting modes are different, the former being less. Complete equivalent circuits describing the frequency dependance of the input and output impedances for both modes are given. In particular, the output impedance is shown to be inductive for the frequencies of interest, and this is also confirmed by experimental results.
Resumo:
We present robust joint nonlinear transceiver designs for multiuser multiple-input multiple-output (MIMO) downlink in the presence of imperfections in the channel state information at the transmitter (CSIT). The base station (BS) is equipped with multiple transmit antennas, and each user terminal is equipped with one or more receive antennas. The BS employs Tomlinson-Harashima precoding (THP) for interuser interference precancellation at the transmitter. We consider robust transceiver designs that jointly optimize the transmit THP filters and receive filter for two models of CSIT errors. The first model is a stochastic error (SE) model, where the CSIT error is Gaussian-distributed. This model is applicable when the CSIT error is dominated by channel estimation error. In this case, the proposed robust transceiver design seeks to minimize a stochastic function of the sum mean square error (SMSE) under a constraint on the total BS transmit power. We propose an iterative algorithm to solve this problem. The other model we consider is a norm-bounded error (NBE) model, where the CSIT error can be specified by an uncertainty set. This model is applicable when the CSIT error is dominated by quantization errors. In this case, we consider a worst-case design. For this model, we consider robust (i) minimum SMSE, (ii) MSE-constrained, and (iii) MSE-balancing transceiver designs. We propose iterative algorithms to solve these problems, wherein each iteration involves a pair of semidefinite programs (SDPs). Further, we consider an extension of the proposed algorithm to the case with per-antenna power constraints. We evaluate the robustness of the proposed algorithms to imperfections in CSIT through simulation, and show that the proposed robust designs outperform nonrobust designs as well as robust linear transceiver designs reported in the recent literature.
Resumo:
This paper reports the design of an input-triggered polymorphic ASIC for H.264 baseline decoder. Hardware polymorphism is achieved by selectively reusing hardware resources at system and module level. Complete design is done using ESL design tools following a methodology that maintains consistency in testing and verification throughout the design flow. The proposed design can support frame sizes from QCIF to 1080p.