944 resultados para Induction furnace
Mechanism of dendritic epidermal T cell-mediated tolerance induction and inhibition of proliferation
Resumo:
Dendritic epidermal T cells (DETC) comprise a unique population of T cells that reside in mouse epidermis and whose function remains unclear. Most DETC express a $\gamma\delta$ TCR, although some, including our DETC line, AU16, express an $\alpha\beta$ TCR. Additionally, AU16 cells express CD3, Thy-1, CD45, CD28, B7, and AsGM-1. Previous studies in our laboratory demonstrated that hapten-conjugated AU16 could induce specific immunologic tolerance in vivo and inhibit T cell proliferation in vitro. Both these activities are antigen-specific, and the induction of tolerance is non-MHC-restricted. In addition, AU16 cells are cytotoxic to a number of tumor cell lines in vitro. These studies suggested a role for these cells in immune surveillance. The purpose of my studies was to test the hypothesis that these functions of DETC (tolerance induction, inhibition of T cell proliferation, and tumor cell killing) were mediated by a cytotoxic mechanism. My specific aims were (1) to determine whether AU16 could prevent or delay tumor growth in vivo; and (2) to determine the mechanism whereby AU16 induce tolerance, using an in vitro proliferation assay. I first showed that AU16 cells killed a variety of skin tumor cell lines in vitro. I then demonstrated that they prevented melanoma growth in C3H mice when both cell types were mixed immediately prior to intradermal (i.d.) injection. Studies using the in vitro proliferation assay confirmed that DETC inhibit proliferation of T cells stimulated by hapten-bearing, antigen-presenting cells (FITC-APC). To determine which cell was the target, $\gamma$-irradiated, hapten-conjugated AU16 were added to the proliferation assay on d 4. They profoundly inhibited the proliferation of naive T cells to $\gamma$-irradiated, FITC-APC, as measured by ($\sp3$H) TdR uptake. This result strongly suggested that the T cell was the target of the AU16 activity because no APC were present by d 4 of the in vitro culture. In contrast, the addition of FITC-conjugated splenic T cells (SP-T) or lymph node T cells (LN-T) was less inhibitory. Preincubation of the T cells with FITC-AU16 cells for 24 h, followed by removal of the AU16 cells, completely inhibited the ability of the T cells to proliferate in response to FITC-APC, further supporting the conclusion that the T cell was the target of the AU16. Finally, AU16 cells were capable of killing a variety of activated T cells and T cell lines, arguing that the mechanism of proliferation inhibition, and possibly tolerance induction is one of cytotoxicity. Importantly, $\gamma\delta$ TCR$\sp+$ DETC behaved, both in vivo and in vitro like AU16, whereas other T cells did not. Therefore, these results are consistent with the hypothesis that AU16 cells are true DETC and that they induce tolerance by killing T cells that are antigen-activated in vivo. ^
{\it In vivo\/} induction of DNA changes in cervicovaginal epithelium by perinatal estrogen exposure
Resumo:
Epidemiological studies have associated estrogens with human neoplasm such as the endometrium, cervix, vagina, breast, and liver. Perinatal exposure to natural (17$\beta$-estradiol (17$\beta$-E$\sb2)\rbrack$ and synthetic (diethylstilbestrol (DES)) estrogens induces neoplastic changes in humans and rodents. Previous studies demonstrated that neonatal 17$\beta$-E$\sb2$ treatment increased the nuclear DNA content of mouse cervicovaginal epithelium that preceded histologically evident neoplasia. In order to determine whether this effect was specific to 17$\beta$-E$\sb2,$ associated with chromosomal changes, and relevant to the human, female BALB/c mice were treated neonatally with either 17$\alpha$-estradiol (17$\alpha$-E$\sb2)$ and 5$\beta$-dihydrotestosterone ($5\beta$-DHT), both inactive steroids in adult reproductive tissue, or 17$\beta$-E$\sb2.$ Ten-day-old mice received pellet implants of 17$\beta$-E$\sb2,$ 17$\alpha$-E$\sb2,$ $5\beta$-DHT, or cholesterol. Seventy-day-old cervicovaginal tracts were examined histologically and flow cytometrically. 17$\beta$-E$\sb2$-treated animals were evaluated by fluorescent in situ hybridization (FISH) using a probe specific for chromosome 1. Trisomy of chromosomes 1, 7, 11, and 17 was evaluated by FISH in cervicovaginal material from 19 DES-exposed and 19 control patients.^ $17\beta$-E$\sb2, 17\alpha$-E$\sb2$, and $5\beta$-DHT-induced dramatic developmental and histological changes in the cervicovaginal tract, including hypospadia, hyperplasia, and persistent cornification. The changes induced by 17$\alpha$-E$\sb2$ were equivalent to 17$\beta$-E$\sb2.$ Neonatal 17$\alpha$-E$\sb2$-induced adenosquamous cervicovaginal tumors at 24 months. 17$\alpha$-E$\sb2$ and $5\beta$-DHT significantly increased the nuclear DNA content over control animals, but at significantly lower levels than 17$\beta$-E$\sb2.$ DNA ploidy changes were highest (80%) in animals treated neonatally and secondarily with 17$\beta$-E$\sb2.$ Secondary 17$\alpha$-E$\sb2$ and $5\beta$-DHT administration, unlike 17$\beta$-E$\sb2,$ didn't significantly increase DNA content. Chromosome 1 trisomy incidence was 66% in neonatal 17$\beta$-E$\sb2$-treated animals. Trisomy was evident in 4 DES-exposed patients: one patient with trisomy of chromosomes 1, 7, and 11; one patient with chromosome 7 trisomy; and two patients with chromosome 1 trisomy. These data demonstrated the biological effects of 17$\alpha$-E$\sb2$ and $5\beta$-DHT were age-dependent, 17$\alpha$-E$\sb2$ was equivalent to 17$\beta$-E$\sb2$ and tumorigenic when administered neonatally, and histological changes were not steroid specific. Chromosomal changes were associated with increased nuclear DNA content and chromosomal changes may be an early event in the development of tumors in human DES-exposed tissues. ^
Resumo:
Cytotoxic T lymphocytes (CTLs) play an important role in the suppression of initial viremia after acute infection with the human immunodeficiency virus (HIV), the causative agent of acquired immune deficiency syndrome (AIDS). Most HIV-infected individuals attain a high titer of anti-HIV antibodies within weeks of infection; however this antibody-mediated immune response appears not to be protective. In addition, anti-HIV antibodies can be detrimental to the immune response to HIV through enhancement of infection and participating in autoimmune reactions as a result of HIV protein mimicry of self antigens. Thus induction and maintenance of a strong HIV-specific CTL immune response in the absence of anti-HIV antibodies has been proposed to be the most effective means of controlling of HIV infection. Immunization with synthetic peptides representing HIV-specific CTL epitopes provides a way to induce specific CTL responses, while avoiding stimulation of anti-HIV antibody. This dissertation examines the capacity of synthetic peptides from the V3 loop region of the gp120 envelope protein from several different strain of HIV-1 to induce HIV-specific, MHC-restricted CD8$\sp+$ CTL response in vivo in a mouse model. Seven synthetic peptides representative of sequences found throughout North America, Europe, and Central Africa have been shown to prime CTLs in vivo. In the case of the MN strain of HIV-1, a 13 amino acid sequence defining the epitope is most efficient for optimal induction of specific CTL, whereas eight to nine amino acid sequences that could define the epitope were not immunogenic. In addition, synthesis of peptides with specific amino acid substitutions that are important for either MHC binding or T cell receptor recognition resulted in peptides that exhibited increased immunogenicity and induced CTLs that displayed altered specificity. V3 loop peptides from HIV-1 MN, SC, and Z321 induced a CTL population that was broadly cross-reactive against strains of HIV-1 found throughout the world. This research confirms the potential efficacy of using synthetic peptides for in vivo immunization to induce HIV-specific CTL-mediated responses and provides a basis for further research into development of synthetic peptide-based vaccines. ^
Resumo:
The cytochrome P450 monooxygenase system consists of NADPH- cytochrome P450 reductase (P450 reductase) and cytochromes P450, which can catalyze the oxidation of a wide variety of endogenous and exogenous compounds, including steroid hormones, fatty acids, drugs, and pollutants. The functions of this system are as diverse as the substrates. P450 reductase transfers reducing equivalents from NADPH to P450, which in turn catalyzes metabolic reactions. This enzyme system has the highest level of activity in the liver. It is also present in other tissues, including brain. The functions of this enzyme system in brain seem to include: neurotransmission, neuroendocrinology, developmental and behavioral modulation, regulation of intracellular levels of cholesterol, and potential neurotoxicity.^ In this study, we have set up the rat glioma C6 cell line as an in vitro model system to examine the expression, induction, and tissue-specific regulation of P450s and P450 reductase. Rat glioma C6 cells were treated with P450 inducers phenobarbital (PB) or benzo(a)anthracene (BA). The presence of P450 reductase and of cytochrome P450 1A1, 1A2, 2A1, 2B1/2, 2C7, 2D1-5 and 2E1 was detected by reverse transcription followed by polymerase chain reaction (RT-PCR) and confirmed by restriction digestion. The induction of P450 1A1 and 2B1/2 and P450 reductase was quantified using competitive PCR. Ten- and five-fold inductions of P450 1A and 2B mRNA after BA or PB treatments, respectively, were detected. Western blot analysis of microsomal preparations of glioma C6 cells demonstrated the presence of P450 1A, 2B and P450 reductase at the protein level. ELISAs showed that BA and PB induce P450 1A and 2B proteins 7.3- and 13.5-fold, respectively. Microsomes prepared from rat glioma C6 cells showed cytochrome P450 CO difference spectra with absorption at or near 450 nm. Microsomes prepared from rat glioma C6 cells demonstrated much higher levels of ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-dealkylase (PROD) activity, when treated with BA or PB, respectively. These experiments provide further evidence that the rat glioma C6 cell line contains an active cytochrome P450 monooxygenase system which can be induced by P450 inducers. The mRNAs of P450 1A1 and 2B1/2 can not bind to the oligo(dT) column efficiently, indicating they have very short poly(A) tails. This finding leads us to study the tissue specific regulation of P450s at post-transcriptional level. The half lives of P450 1A1 and 2B1/2 mRNA in glioma C6 cells are only 1/10 and 1/3 of that in liver. This may partly contribute to the low expression level of P450s in glial cells. The induction of P450s by BA or PB did not change their mRNA half lives, indicating the induction may be due to transcriptional regulation. In summary of this study, we believe the presence of the cytochrome P450 monooxygenase system in glial cells of the brain may be important in chemotherapy and carcinogenesis of brain tumors. ^
Resumo:
The urokinase-type plasminogen activator receptor (u-PAR) promotes extracellular matrix degradation, invasion and metastasis. A first objective of this dissertation was to identify cis-elements and trans-acting factors activating u-PAR gene expression through a previously footprinted (–148/–124) promoter region. Mobility shifting experiments on nuclear extracts of a high u-PAR-expressing colon cancer cell line (RKO) indicated Sp1, Sp3 and a factor similar to, but distinct from, AP-2α bound to an oligonucleotide spanning –152/–135. Mutations preventing the binding of the AP-2α-related factor reduced u-PAR promoter activity. In RKO, the expression of a dominant negative AP-2 (AP-2αB) diminished u-PAR promoter activity, protein and u-PAR mediated laminin degradation. Conversely, u-PAR promoter activity in low u-PAR-expressing GEO cells was increased by AP-2αA expression. PMA treatment, which induces u-PAR expression, caused an increased amount of the AP-2α-related factor-containing complex in GEO, and mutations preventing AP-2α-like and Sp1/Sp3 binding reduced the u-PAR promoter stimulation by PMA. In resected colon cancers, u-PAR protein amounts were related to the amount of the AP-2α-related factor-containing complex. In conclusion, constitutive and PMA- inducible u-PAR gene expression and -proteolysis are mediated partly through transactivation via a promoter sequence (–152/435) bound with an AP-2α-related factor and Sp1/Sp3. ^ A second interest of this dissertation was to determine if a constitutively active Src regulates the transcription of the u-PAR gene, since c-src expression increases invasion in colon cancer. Increased u-PAR protein and laminin degradation paralleling elevated Src activity was evident in SW480 colon cancer cells stably expressing a constitutively active Src (Y- c-src527F). Nuclear run-on experiments indicated that this was due largely to transcriptional activation. While transient transfection of SW480 cells with Y-c-src527F induced a u-PAR-CAT-reporter, mutations preventing Sp1-binding to promoter region –152/435 abolished this induction. Mobility shift assays revealed increased Sp1 binding to region –152/135 with nuclear extracts of Src-transfected SW480 cells. Finally, the amounts of endogenous u-PAR in resected colon cancers significantly correlated with Src-activity. These data suggest that u-PAR gene expression and proteolysis are regulated by Src, this requiring the promoter region (–152/–135) bound with Sp1, thus, demonstrating for the first time that transcription factor Sp1 is a downstream effector of Src. ^
Resumo:
An important goal in the study of long-term memory is to understand the signals that induce and maintain the underlying neural alterations. In Aplysia, long-term sensitization of defensive reflexes has been examined in depth as a simple model of memory. Extensive studies of sensory neurons (SNs) in Aplysia have led to a cellular and molecular model of long-term memory that has greatly influenced memory research. According to this model, induction of long-term memory in Aplysia depends upon serotonin (5-HT) release and subsequent activation of the cAMP-PKA pathway in SNs. The evidence supporting this model mainly came from studies of long-term synaptic facilitation (LTF) using dissociated (and therefore axotomized) cells growing in culture. However, studies in more intact preparations have produced complex and discrepant results. Because these SNs function as nociceptors, and display similar alterations (long-term hyperexcitability [LTH], LTF, and growth) in models of memory and nerve injury, this study examined the roles of 5-HT and the cAMP-PKA pathway in the induction and expression of long-term, injury-related LTH and LTF in Aplysia SNs. ^ The results presented here suggest that 5-HT is not a primary signal for inducing LTH (and perhaps LTF) in Aplysia SNs. Prolonged treatment with 5-HT failed to induce LTH of Aplysia SNs in either ganglia or dissociated-cell preparations. Treatment with a 5-HT antagonist, methiothepin, during noxious nerve stimulation failed to reduce 24 hr LTH. Furthermore, while 5-HT can induce LTF of SN synapses, this LTF appears to be an indirect effect of 5-HT on other cells. When neural activity was suppressed by elevating divalent cations or by using tetrodotoxin (TTX), 5-HT failed to induce LTF. Unlike LTF, LTH of the SNs could not be produced, even when 5-HT treatment occurred in normal artificial sea water (ASW), suggesting that LTH and LTF are likely to depend on different signals for induction. However, methiothepin reduced the later expression of LTH induced by nerve stimulation, suggesting that 5-HT contributes to the maintenance of LTH in Aplysia SNs.n of somata from the ganglion (which axotomizes SNs) or crushing peripheral n. ^ In summary, this study found that 5-HT and the cAMP-PKA pathway are not involved in the induction of long-term, injury-related LTH of Aplysia SNs, but persistent release of 5-HT and persistent PKA activity contribute to the maintenance of LTH induced by injury. (Abstract shortened by UMI.)^
Resumo:
Resting endothelial cells express the small proteoglycan biglycan, whereas sprouting endothelial cells also synthesize decorin, a related proteoglycan. Here we show that decorin is expressed in endothelial cells in human granulomatous tissue. For in vitro investigations, the human endothelium-derived cell line, EA.hy 926, was cultured for 6 or more days in the presence of 1% fetal calf serum on top of or within floating collagen lattices which were also populated by a small number of rat fibroblasts. Endothelial cells aligned in cord-like structures and developed cavities that were surrounded by human decorin. About 14% and 20% of endothelial cells became apoptotic after 6 and 12 days of co-culture, respectively. In the absence of fibroblasts, however, the extent of apoptosis was about 60% after 12 days, and cord-like structures were not formed nor could decorin production be induced. This was also the case when lattices populated by EA.hy 926 cells were maintained under one of the following conditions: 1) 10% fetal calf serum; 2) fibroblast-conditioned media; 3) exogenous decorin; or 4) treatment with individual growth factors known to be involved in angiogenesis. The mechanism(s) by which fibroblasts induce an angiogenic phenotype in EA.hy 926 cells is (are) not known, but a causal relationship between decorin expression and endothelial cell phenotype was suggested by transducing human decorin cDNA into EA.hy 926 cells using a replication-deficient adenovirus. When the transduced cells were cultured in collagen lattices, there was no requirement of fibroblasts for the formation of capillary-like structures and apoptosis was reduced. Thus, decorin expression seems to be of special importance for the survival of EA.hy 926 cells as well as for cord and tube formation in this angiogenesis model.
Resumo:
Background: Emotion research in neuroscience targets brain structures and processes involved in discrete emotion categories (e.g. anger, fear, sadness) or dimensions (e.g. valence, arousal, approach-avoidance), and usually relies on carefully controlled experimental paradigms with standardized and often simple emotion-eliciting stimuli like e.g. unpleasant pictures. Emotion research in clinical psychology and psychotherapy is often interested in very subtle differences between emotional states, e.g. differences within emotion categories (e.g. assertive, self-protecting vs. rejecting, protesting anger or specific grief vs. global sadness), and/or the biographical, social, situational, or motivational contexts of the emotional experience, which are desired to be minimized in experimental neuroscientific research. Objective: In order to facilitate the experimental and neurophysiological investigation of psychotherapeutically relevant emotional experiences, the present study aims at developing a priming procedure to induce specific, therapeutically and biographically relevant emotional states under controlled experimental conditions. Methodology: N = 50 participants who reported negative feelings towards another close person were randomly assigned to 2 different conditions. They fulfilled 2 different sentence completion tasks that were supposed to prime either ‘therapeutically productive’ or ‘therapeutically unproductive’ emotional states and completed an expressive writing task and several self-report measures of specific emotion-related constructs. The sentence completion task consisted in max. 22 sentence stems drawn from psychotherapy patients’ statements that have been shown to be typical for productive or unproductive therapy sessions. The subjects of the present study completed these sentence stems with regard to their own negative feelings towards the close person. Results: There were a substantial inter-individual variability concerning the number of completed sentences, and significant correlations between number of completed sentences and problem activation in both conditions. No differences were observed in general mood or problem activation between both groups after priming. Descriptively, there were differences between groups concerning emotion regulation aspects. Significant differences between groups in resolution of negative feelings towards the other person were found. Discussion: The results point in the expected direction, however the small sample sizes (after exclusion of several subjects) and low power hinder the detection of convincing significant effects. More data is needed in order to evaluate the efficacy of this emotional priming procedure.
Resumo:
OBJECTIVE To determine the potency ratio between S-ketamine and racemic ketamine as inductive agents for achieving tracheal intubation in dogs. STUDY DESIGN Prospective, randomized, 'blinded', clinical trial conducted in two consecutive phases. ANIMALS 112 client-owned dogs (ASA I or II). METHODS All animals were premedicated with intramuscular acepromazine (0.02 mg kg(-1) ) and methadone (0.2 mg kg(-1) ). In phase 1, midazolam (0.2 mg kg(-1) ) with either 3 mg kg(-1) of racemic ketamine (group K) or 1.5 mg kg(-1) of S-ketamine (group S) was administered IV, for induction of anaesthesia and intubation. Up to two additional doses of racemic (1.5 mg kg(-1) ) or S-ketamine (0.75 mg kg(-1) ) were administered if required. In phase 2, midazolam (0.2 mg kg(-1) ) with 1 mg kg(-1) of either racemic ketamine (group K) or S-ketamine (group S) was injected and followed by a continuous infusion (1 mg kg minute(-1) ) of each respective drug. Differences between groups were statistically analyzed via t-test, Fisher exact test and ANOVA for repeated measures. RESULTS Demographics and quality and duration of premedication, induction and intubation were comparable among groups. During phase 1 it was possible to achieve tracheal intubation after a single dose in more dogs in group K (n = 25) than in group S (n = 16) (p = 0.046). A dose of 3 mg kg(-1) S-ketamine allowed tracheal intubation in the same number of dogs as 4.5 mg kg(-1) of racemic ketamine. The estimated potency ratio was 1.5:1. During phase 2, the total dose (mean ± SD) of S-ketamine (4.02 ±1.56 mg kg(-1) ) and racemic ketamine (4.01 ± 1.42) required for tracheal intubation was similar. CONCLUSION AND CLINICAL RELEVANCE Racemic and S-ketamine provide a similar quality of anaesthetic induction and intubation. S-ketamine is not twice as potent as racemic ketamine and, if infused, the potency ratio is 1:1.
Resumo:
We define a rank function for formulae of the propositional modal μ-calculus such that the rank of a fixed point is strictly bigger than the rank of any of its finite approximations. A rank function of this kind is needed, for instance, to establish the collapse of the modal μ-hierarchy over transitive transition systems. We show that the range of the rank function is ωω. Further we establish that the rank is computable by primitive recursion, which gives us a uniform method to generate formulae of arbitrary rank below ωω.
Resumo:
We introduce and analyse a theory of finitely stratified general inductive definitions over the natural numbers, inline image, and establish its proof theoretic ordinal, inline image. The definition of inline image bears some similarities with Leivant's ramified theories for finitary inductive definitions.