985 resultados para ION-BEAM DEPOSITION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Treatment planning of heavy-ion radiotherapy involves predictive calculation of not only the physical dose but also the biological dose in a patient body. The goal in designing beam-modulating devices for heavy ion therapy is to achieve uniform biological effects across the spread-out Bragg peak (SOBP). To achieve this, a mathematical model of Bragg peak movement is presented. The parameters of this model have been resolved with Monte Carlo method. And a rotating wheel filter is designed basing on the velocity of the Bragg peak movement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the isospin- and momentum-dependent hadronic transport model 1BUU04, we have investigated the influence of the entrance-channel isospin asymmetry on the sensitivity of the pre-equilibrium neutron/proton ratio to symmetry energy in central heavy-ion collisions induced by high-energy radioactive beams. Our analysis and discussion are based on the dynamical simulations of the three isotopic reaction Systems Sn-132+Sn-124, Sn-124+Sn-112 and Sn-112+(112)Su which are of the same total proton number but, different isospin asymmetry. We find that, the kinetic-energy distributions of the pre-equilibrium neutron/proton ratio are quite sensitive to the density-dependence of symmetry energy at incident beam energy E/A = 400 MeV, and the sensitivity increases as the isospin asymmetry of the reaction system increases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor radiotherapy was a promising modality and over 100 years. Beams of heavy-charged particles show high RBE advantages and become the optimum tool for tumors therapy. Newly, along with the development of accelerators, scintillators, micro-electronics and computers, the heavy ion tumor therapy has been recognized more and developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CdS nanotubes and nanowires have been synthesized with controlled dimensions by means of template-electrodeposition method in etched ion-track membranes. The diameters of nanotubes and nanowires are between 20 and I 10 nm, and the lengths are up to tens of micrometers. X-ray diffraction (XRD) and selected area electron diffraction (SAED) pattern investigations demonstrate that CdS nanotubes and nanowires are polycrystalline in nature. The UV-vis absorption spectra of CdS nanotubes and nanowires embedded in polycarbonate (PC) membranes show that the absorption edges of PC films shift towards the shorter wavelength, with decreasing diameters of the deposited nanostructures. The results indicate that nanowires are formed from nanotubes by nanotube-stuffing-growth mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basic research related to heavy-ion cancer therapy has been done at the Institute of Modern Physics (IMP), Chinese Academy of Sciences since 1995. Now a plan of clinical trial with heavy ions has been launched at IMP. First, superficially placed tumor treatment with heavy ions is expected in the therapy terminal at the Heavy Ion Research Facility in Lanzhou (HIRFL), where carbon ion beams with energy up to 100 MeV/u can be supplied. The shallow-seated tumor therapy terminal at HIRFL is equipped with a passive beam delivery system including two orthogonal dipole magnets, which continuously scan pencil beams laterally and generate a broad and uniform irradiation field, a motor-driven energy degrader and a multi-leaf collimator. Two different types of range modulator, ripple filter and ridge filter with which Guassian-shaped physical dose and uniform biological effective dose Bragg peaks can be shaped for therapeutic ion beams respectively, have been designed and manufactured. Therefore, two-dimensional and three-dimensional conformal irradiations to tumors can be performed with the passive beam delivery system at the earlier therapy terminal. Both the conformal irradiation methods have been verified experimentally and carbon-ion conformal irradiations to patients with superficially placed tumors have been carried out at HIRFL since November 2006.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Probing in-medium nucleon-nucleon (NN) cross section sigma(1)(NN)(alpha) in heavy ion collisions has been investigated by means of the isospin-dependent quantum molecular dynamics (IQMD) with the isospin- and momentum- dependent interaction (IMDI(tau)). It is found that there are the very obvious medium effect and the sensitive isospin- dependence of nuclear stopping R on the in-medium NN cross section sigma(1)(NN)(alpha) in the nuclear reactions induced by halo-neutron projectile and the same-mass stable projectile. However, R induced by the neutron-halo projectile is obviously lower than that induced by the corresponding stable projectile. In particular, there is a very obvious dependence of R on the medium effect of sigma(1)(NN)(alpha) in the whole beam energy region for the above two kinds of projectiles. Therefore, the comparison between the results of R's in the reactions induced by the neutron-halo projectile and the corresponding same-mass stable projectile is a more favourable probe for extracting the information of sigma(1)(NN)(alpha) because of adding a new judgement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 320 kV high voltage (HV) platform has been constructed at Institute of Modern Physics (IMP) to satisfy the increasing requirements of experimental studies in some heavy ion associated directions. A high charge state all-permanent magnet ECRIS-LAPECR2 has been designed and fabricated to provide intense multiple charge state ion beams (such as 1000 e mu A O6+, 16.7 e mu A Ar14+, 24 e mu A Xe27+, etc.) for the HV platform. LAPECR2 has a dimension of 0 650 mm x 560 mm. The powerful 3D magnetic confinement to the ECR plasma and the optimum designed magnetic field for the operation at 14.5 GHz makes it possible to obtain very good performances from this source. After a brief introduction of the ECRIS and accelerator development at IMP, the conceptual design of LAPECR2 source is presented. The first test results of this all-permanent magnet ECRIS are given in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The passive beam delivery system in the superficially-placed tumor therapy terminal at Heavy Ion Researc h Facility in Lanzhou (HIRFL), which includes two orthogonal dipole magnets as scanning system, a motor-driven energy degrader as range-shifter, series of ridge filters as range modulator and a multileaf collimator, is introduced in detail. The capacities of its important components and the whole system have been verified experimentally. The tests of the ridge filter for extending Bragg peak and the range shifter for energy adjustment show both work well. To examine the passive beam delivery system, a beam shaping experiment were carried out, simulating a three-dimensional (3D) conformal irradiation to a tumor. The encouraging experimental result confirms that 3D layer-stacking conformal irradiation can be performed by means of the passive system. The validation of the beam delivery system establishes a substantial basis for upcoming clinical trial for superficially-placed tumors with heavy ions in the therapy terminal at HIRFL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work a study of damage production in gallium nitride via elastic collision process (nuclear energy deposition) and inelastic collision process (electronic energy deposition) using various heavy ions is presented. Ordinary low-energy heavy ions (Fe+ and Mo+ ions of 110 keV), swift heavy ions (Pb-208(27+) ions of 1.1 MeV/u) and slow highly-charged heavy ions (Xen+ ions of 180 keV) were employed in the irradiation. Damage accumulation in the GaN crystal films as a function of ion fluence and temperature was studied with RBS-channeling technique, Raman scattering technique, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). For ordinary low-energy heavy ion irradiation, the temperature dependence of damage production is moderate up to about 413 K resulting in amorphization of the damaged layer. Enhanced dynamic annealing of defects dominates at higher temperatures. Correlation of amorphization with material decomposition and nitrogen bubble formation was found. In the irradiation of swift heavy ions, rapid damage accumulation and efficient erosion of the irradiated layer occur at a rather low value of electronic energy deposition (about 1.3 keV/nm(3)),. which also varies with irradiation temperature. In the irradiation of slow highly-charged heavy ions (SHCI), enhanced amorphization and surface erosion due to potential energy deposition of SHCI was found. It is indicated that damage production in GaN is remarkably more sensitive to electronic energy loss via excitation and ionization than to nuclear energy loss via elastic collisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermally grown amorphous SiO2 samples were implanted at room temperature (RT) with 120 keV C-ions to a dose ranging from 1.0 x 10(16) to 8.6 x 10(17)C ions/cm(2), then irradiated at RT with 950 MeV Pb, 345 or 1754 MeV Xe ions to a fluence in the region from 1.0 x 10(11) to 3.8 x 10(12) ions/cm(2), respectively. The irradiated samples were investigated using micro-FTIR and micro-Raman spectroscopes. It was found that new chemical bonds such as Si-C, C=C(O), C C and Si(C)-O-C bonds formed significantly in the C-doped SiO2 films after heavy ion irradiations. The evolution of Si-O-C bonds and possible mechanism of structural modification in C-doped SiO2 induced by swift heavy ion irradiations were discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycarbonate (PC) membranes were irradiated with swift heavy ions and latent tracks were created along the ions' trajectories. Nanopores, diameters between 100 and 500 nm, were obtained after illuminating the membranes with UV light and etching in NaOH solution. Silver nanowires were produced in the etched ion-track membranes by electrochemical deposition. The morphology and crystallinity of the silver nanowires were studied by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). Under certain conditions (deposition voltage 25 mV, current density 1-2 mA.cm(-2), temperature 50 degrees C, electrolyte 0.1 mol.L-1 AgNO3), single-crystalline silver nanowires with preferred orientation along the [111] direction can be synthesized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single crystals of alpha-alumina were irradiated at room temperature with 1.157 (GeVFe)-Fe-56, 1.755 (GeVXe)-Xe-136 and 2.636 (GeVU)-U-238 ions to fluences range from 8.7 x 10(9) to 6 x 10(12) ions/cm(2). Virgin and irradiated samples were investigated by ultraviolet visible absorption measurements. The investigation reveals the presence of various color centers (F, F+, F-2(2+), F-2(+) and F-2 centers) appearing in the irradiated samples. It is found that the ratio of peak absorbance of F-2 to F centers increases with the increase of the atomic numbers of the incident ions from Fe, Xe to U ions, so do the absorbance ratio of F-2(2+) to F+ centers and of large defect cluster to F centers, indicating that larger defect clusters are preferred to be produced under heavier ion irradiation. Largest color center production cross-section was found for the U ion irradiation. The number density of single anion vacancy scales better with the energy deposition through processes of nuclear stopping, indicating that the nuclear energy loss processes determines the production of F-type defects in heavy ion irradiated alpha-alumina.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ovaries of Kun-Ming strain mice (3 weeks) were irradiated with different doses of C-12(6+) ion in the Bragg peak or the plateau region. At 10th day after irradiation, ovarian and uterine weights were measured: normal and atretic (identified with the oocyte to be degenerating or absent) primordial, primary and preantral follicles were identified in the largest cross-section of each ovary. Percentage (%) of normal follicles of each developmental stage of oogenesis was calculated. The data showed that compared to controls, there was a dose-related decrease in percentage of normal follicles in each developmental stage. And the weights of ovary and uterus were also reduced with doses of irradiation. Moreover, these effects were much more significant in the Bragg peak region and the region close to the Bragg peak than in the beam's entrance (the plateau region). Radiosensitivity varied in different follicle maturation stages. Primordial follicles, which are thought to be extremely sensitive to ionizing irradiation, were reduced by 86.6%, while primary and preantral follicles reduced only by 72.5% and 61.8% respectively, by exposure with 6 Gy of C-12(6+) ion in the Bragg peak region and the region close to the Bragg peak. The data suggested that due to their optimal depth-dose distribution in the Bragg peak region, heavy ions are ones of the best particles for radiotherapy of tumors located next of vital organs or/and surrounded by normal tissues, especially radiosensitive tissues such as gonads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Respiration-induced target motion is a major problem in intensity-modulated radiation therapy. Beam segments are delivered serially to form the total dose distribution. In the presence of motion, the spatial relation between dose deposition from different segments will be lost. Usually, this results in over-and underdosage. Besides such interplay effects between target motion and dynamic beam delivery as known from photon therapy, changes in internal density have an impact on delivered dose for intensity-modulated charged particle therapy. In this study, we have analysed interplay effects between raster scanned carbon ion beams and target motion. Furthermore, the potential of an online motion strategy was assessed in several simulations. An extended version of the clinical treatment planning software was used to calculate dose distributions to moving targets with and without motion compensation. For motion compensation, each individual ion pencil beam tracked the planned target position in the lateral aswell as longitudinal direction. Target translations and rotations, including changes in internal density, were simulated. Target motion simulating breathing resulted in severe degradation of delivered dose distributions. For example, for motion amplitudes of +/- 15 mm, only 47% of the target volume received 80% of the planned dose. Unpredictability of resulting dose distributions was demonstrated by varying motion parameters. On the other hand, motion compensation allowed for dose distributions for moving targets comparable to those for static targets. Even limited compensation precision (standard deviation similar to 2 mm), introduced to simulate possible limitations of real-time target tracking, resulted in less than 3% loss in dose homogeneity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the electrochemical growth of gold nanowires with controlled dimensions and crystallinity. By systematically varying the deposition conditions, both polycrystalline and single-crystalline wires with diameters between 20 and 100 nm are successfully synthesized in etched ion-track membranes. The nanowires are characterized using scanning electron microscopy, high resolution transmission electron microscopy, scanning tunnelling microscopy and x-ray diffraction. The influence of the deposition parameters, especially those of the electrolyte, on the nanowire structure is investigated. Gold sulfite electrolytes lead to polycrystalline structure at the temperatures and voltages employed. In contrast, gold cyanide solution favours the growth of single crystals at temperatures between 50 and 65 degrees C under both direct current and reverse pulse current deposition conditions. The single-crystalline wires possess a [110] preferred orientation.