916 resultados para Homogenous catalysis
Resumo:
The Raman band assigned to the nu(C=O)mode in N,N-dimethylformamide (at ca. 1660 cm(-1)) was used as a probe to study a group of ionic liquids 1-alkyl-3-methylimidazolium bromide ([C(n)Mlm]Br) with different alkyl groups (n = 2, 4, 6, 8 and 10 carbons) in binary equimolar binary mixtures with dimethylformamide. Due to the high electric dipole moment of the group C=O, there is a substantial coupling between adjacent molecules in the solution, and the corresponding Raman band involves both vibrational and reorientational modes. Different chain lengths of the ILs lead to different extents of the uncoupling of adjacent molecules of dimethylformamide, resulting in different shifts for this band in the mixtures. Information about the organization of ionic liquids in solution was obtained and a model of aggregation for these systems is proposed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work is to address the activation process of a high temperature shift (HTS) catalyst, composed of Fe2O3/Cr2O3/CuO, by analyzing it before activation (HTS-V) and after activation (HTS-A) using complementary characterization techniques. The textural and morphological characterizations were done by transmission electron rnicroscopy (TEM) and nitrogen physisorption at 77 K; crystallographic structure was confirmed by X-ray diffraction (XRD); electronic structure was analyzed by X-ray absorption spectroscopy (XAS) and the chemical composition of the catalyst`s surface was obtained by X-ray photoelectron spectroscopy (XPS). The investigation pointed out that the HTS-V catalyst presents good textural and morphological properties, which are not deeply affected by the activation process (sample HTS-A). The iron oxide phase in the HTS-V catalyst is hematite whereas in HTS-A catalyst is magnetite with Fe2+/Fe3+ ratio close to the expected value (0.5). For both samples, the Cr ions seem to be incorporated in the iron oxide lattice with higher concentration at particle surface. In the HTS-V catalyst, the Cu ions have oxidation number II and occupy in average distorted octahedral sites; after the activation, the Cu ions are partially reduced, suggesting that the reduction of the Cu species is complex. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Increased diastereoisomeric excesses are obtained for the sulfanylation reactions of some 2-methylsulfinyl cyclanones under phase-transfer catalysis using the chiral catalyst QUIBEC instead of TEBA. The optically pure (SS,2S)-2-methylsulfinyl-2-methylsulfanylcyclohexanone thus prepared reacts with ethyl acetate lithium enolate affording, after hydrolysis, (R)-2-[(ethoxycarbonyl)methyl]-2-hydroxycyclohexanone in 60% ee. Density functional theory calculations (at the B3LYP/6-311++G(d,p) level) can successfully explain the origin of this result as the kinetically favored axial attack of the nucleophile to the carbonyl group of the most stable conformer of the cyclanone, in which the CH(3)SO and CH(3)S groups are at the equatorial and axial positions, respectively. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Tetra-alkoxysilanes are common and useful reagents in sol-gel processes and understanding their reactivity is important in the design of new materials. The mechanism of gas-phase reactions that mimic alcoholyis of Si(OMe)(4) (usually known as TMOS) under acidic conditions have been studied by Fourier transform ion cyclotron resonance techniques and density functional calculations at the B3LYP/6-311+G(d,p) level. The proton affinity of TMOS has been estimated at 836.4 kJ mol(-1) and protonation of TMOS gives rise to an ionic species that is best represented as trimethoxysilyl cations associated with a methanol molecule. Protonated TMOS undergoes rapid and sequential substitution of the methoxy groups in the gas-phase upon reaction with alcohols. The calculated energy profile of the reaction indicates that the substitution reaction through an S(N)2 type mechanism may be more favorable than frontal attack at silicon. Furthermore, the sequential substitution reactions are promoted by a mechanism that involves proton shuttle from the most favorable protonation site to the oxygen of the departing group mediated by the neutral reagent molecule.
Resumo:
Sulfinyltoluquinones (2a-2c) were submitted to thermal or catalyzed [4+2] cycloaddition reactions with cyclopentadiene. For p-tolylsulfinyltoluquinones (2b) and (2c), almost complete C2-C3-chemo- and unlike-diastereoselectivity was achieved by catalysis with ZnBr(2), yielding adducts 6. Under thermal conditions, Diels-Alder reaction took place at the C5-C6 double bonds of quinones 2a-2c, generating mixtures of diastereoisomeric like- and unlike-adducts 4.
Resumo:
Hybrid photocatalysts based on an adsorbent SiMgOx and a photocatalyst TiO(2) were developed in a plate shape. The ceramic surface was coated with TiO(2) by the slip-casting technique. The effect of the support in the photocatalytic degradation of trichloroethylene (TCE) was analyzed by modifying TiO(2) loading and the layer thickness. Photocatalysts were characterised by N(2) adsorption-desorption, mercury intrusion porosimetry, SEM, UV-vis spectroscopy and XRD. A direct relationship between the TiO(2) content and the photocatalytic activity was observed up to three layers of TiO(2) (0.66 wt.%). Our results indicate that intermediate species generated on the TiO(2) layer can migrate through relatively long distances to react with the OH(-) surface groups of the support. By increasing the TiO(2) loading of the photocatalyst two effects were observed: trichloroethylene conversion is enhanced, while the efficiency of the oxidation process is decreased at expenses of increasing the selectivity to COCl(2) and dichloroacetylchloride (DCAC). The results are discussed in terms of the layer thickness, TiO(2) amount, TCE conversion and CO(2), and COCl(2) selectivity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Polycarbonate membranes (PCM) of various pores sizes (400, 200, 100 and 50 nm) were used as templates for gold deposition. The electrodeposition from gold ions resulted in the formation of gold nanotubes when large pores size PCMs (400 and 200 nm) were used. On the other hand, gold nanowires were predominant for the PCMs with smaller pores size (100 and 50 nm). Surface-enhanced Raman scattering (SERS) from the probe molecule 4-mercaptopyridine (4-MPy) was obtained from all these nanostructures. The SERS efficiency of the substrates produced using the PC M templates were compared to two commonly used SERS platforms: a roughened gold electrode and gold nanostructures electrodeposited through organized polystyrene spheres (PSS). The SERS signal of the probe molecule increased as the pore diameter of the PCM template decreased. Moreover, the SERS efficiency from the nanostructures produced using 50 nm PCM templates was four and two times better than the signal from the roughened gold electrode and the PSS template, respectively. The SERS substrates prepared using PCM templates were more homogenous over a larger area (ca. 1 cm(2)), presented better spatial and sample to sample reproducibility than the other substrates. These results show that SERS substrates prepared using PCM templates are promising for the fabrication of planar SERS platforms for analytical/bioanalytical applications.
Resumo:
A new class of chiral beta-amino disulfides was synthesized from readily available and inexpensive starting materials by a straightforward method and their abilities as ligands were examined in the enantioselective addition of diethylzinc to aldehydes. Enantiomeric excesses of up to 99% have been obtained using 0.5 mol % of the chiral catalysts.
Resumo:
The performance of noble metal (Pt, Ru, Ir)-promoted Co/MgAl(2)O(4) catalysts for the steam reforming of ethanol was investigated. The catalysts were characterized by energy-dispersive X-ray spectroscopy, Xray diffraction, UV-vis diffuse reflectance spectroscopy, temperature-programmed reduction, temperature-programmed oxidation and X-ray absorption near edge structure (XANES). The results showed that the formation of inactive cobalt aluminate was suppressed by the presence of a MgAl(2)O(4) spinel phase. The effects of the noble metals included a marked lowering of the reduction temperatures of the cobalt surface species interacting with the support. It was seen that the addition of noble metal stabilized the Co sites in the reduced state throughout the reaction. Catalytic performance was enhanced in the promoted catalysts, particularly CoRu/MgAl(2)O(4), which showed the highest selectivity for H(2) production. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Nickel catalysts with a load of 5 wt% Ni, supported on pure ZrO(2) and ZrO(2) stabilized with 4, 8 and 14 mol% CaO, were prepared by the polymerization method. The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction with hydrogen (TPR-H(2)), specific surface area (BET) and impedance spectroscopy (IS) and tested in the carbon dioxide reforming of methane. The XRD patterns showed the presence of the oxide precursor (NiO) and the tetragonal phase of CaO-ZrO(2) solid solutions. According to the TPR-H(2) analysis, the reduction of various NiO species was influenced by the support composition. The electrical properties of the support have a proportional effect on the catalytic activities. Catalytic tests were done at 800 degrees C for 6 h and the composition of the gaseous products and the catalytic conversion depended on the CaO-ZrO(2) solid solution composition and its influence on supported NiO species. A direct relation was found between the variation in the electrical conductivity of the support, the nickel species supported on it and the performance in the catalytic tests. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Nickel catalysts with a load of 5 wt.% Ni, supported on pure ZrO(2) and ZrO(2) stabilized with 4 mol%, 8 mol% and 12 mol% of Y(2)O(3), were prepared by the polymerization method. The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction with hydrogen (TPR-H(2)), specific surface area (BET) and electronic paramagnetic resonance (EPR) and tested as catalysts for carbon dioxide reforming of methane. The XRD patterns showed the presence of the oxide precursor (NiO) and the tetragonal phase of a Y(2)O(3)-ZrO(2) solid solution. According to the TPR-H(2) analysis, the reduction of various NiO species was influenced by the composition of the support. Catalytic tests were conducted at 800 degrees C for 6 h, and the composition of the gaseous products and the catalytic conversion rate depended on the composition of the Y(2)O(3)-ZrO(2) solid solution and its influence on the supported NiO species. A direct relation was observed between the variation in the support, the nickel species supported on it and the performance in the catalytic tests. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Catalysts of Co/Mg/Al promoted with Ce and La were tested in the catalytic partial oxidation of methane (POM) reaction. The addition of promoters was made by anion-exchange. X-ray diffraction (XRD) confirmed the formation of hydrotalcite phase for precursors. The mixed oxides were characterized as a mixture of Co3O4, periclase (Co, Al)MgO and/or spinel structure (Mg, Co)Al2O4. In the catalytic POM reaction over the promoted catalysts, a reduction in the carbon formation rate was found. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work presents results of studies of carbon-dispersed Pt-Rh (1:1) nanoparticles as electrocatalysts for the ethanol electro-oxidation. The influences of the crystallite size and the cell temperature on the yields of CO2, acetaldehyde and acetic acid are investigated. Metal nanoparticles were prepared by two different routes: (1) impregnation on carbon powder followed by thermal reduction on hydrogen atmosphere and (2) chemical reduction of the precursor salts. The surface active area and the electrochemical activity of the electrocatalysts were estimated by CO stripping and cyclic voltammetry in the absence and in the presence of ethanol, respectively. Reaction intermediates and products were analyzed by in situ Fourier Transform Infra-Red Spectroscopy (FTIR) and Differential Electrochemical Mass Spectrometry (DEMS). The electrochemical stripping of CO and the electrochemical ethanol oxidation were slightly faster on the Pt-Rh electrocatalysts compared to Pt/C. Also, in situ FTIR spectra and DEMS measurements evidenced that the CO2/acetaldehyde and the CO2/acetic acid ratios are higher for the Pt-Rh/C materials in relation to Pt/C. This was ascribed to the activation of the C-C bond breaking by Rh, this being more prominent for the materials with smaller crystallite sizes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Pt monolayers deposited on carbon- supported Ru and Rh nanoparticles were investigated as electrocatalysts for ethanol oxidation. Electronic features of the Pt monolayers were studied by in situ XANES (X-ray absorption near-edge structure). The electrochemical activity was investigated by cyclic voltammetry and cronoamperometric experiments. Spectroscopic and electrochemical results were compared to those obtained on carbon-supported Pt-Ru and Pt-Rh alloys, and Pt E-TEK. XAS results indicate a modification of the Pt 5d band due to geometric and electronic interactions with the Ru ant Rh substrates, but the effect of withdrawing electrons from Pt is less pronounced in relation to that for the corresponding alloys. Electrochemical stripping of adsorbed CO, which is one of the intermediates, and the currents for the oxidation of ethanol show faster kinetics on the Pt monolayer deposited on Ru nanoparticles, and an activity that exceeds that of conventional catalysts with much larger amounts of platinum. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work investigates the effects of carbon-supported Pt, Pt-Ru, Pt-Rh and Pt-Ru-Rh alloy electrocatalysts oil the yields of CO2 and acetic acid as electro-oxidation products of ethanol. Electronic and structural features of these metal alloys were studied by in situ X-ray absorption spectroscopy (XAS). The electrochemical activity was investigated by polarization experiments and the reaction intermediates and products were analyzed by in situ Fourier Transform Infra-Red Spectroscopy (FTIR). Electrochemical stripping of CO. which is one of the adsorbed intermediates, presented a faster oxidation kinetics on the Pt-Ru electrocatalyst, and similar rates of reaction on Pt-Rh and Pt. The electrochemical current of ethanol oxidation showed a higher value and the onset potential was less positive oil Pt-Ru. However, in situ FTIR spectra evidenced that the CO2/acetic acid ratio is higher for the materials with Rh, mainly at lower potentials. These results indicate that the Ru atoms act mainly by providing oxygenated species for the oxidation of ethanol intermediates, and point out ail important role of Rh on the C-C bond dissociation. (C) 2007 Elsevier Ltd. All rights reserved.