960 resultados para HPLC-DAD-MS
Resumo:
BACKGROUND:
The protein components of GCF can be separated by reverse-phase microbore HPLC on a C18 column with detection on the basis of 214 nm absorbance. A single major symmetrical protein peak eluting with a retention time of 26 min (50% acetonitrile) was evident in gingival crevicular fluid (GCF) from periodontitis patients but not in healthy GCF. This protein was identified as human MRP-8 by N-terminal amino acid sequencing and liquid chromatography quadropole mass spectrometry.
AIMS:
To quantify the amount of MRP-8 detectable in GCF from individual healthy, gingivitis and periodontitis affected sites and to study the relationship, if any, between the levels of this responsive protein and periodontal health and disease.
METHODS:
GCF was sampled (30 s) from healthy, gingivitis, and periodontitis sites in peridontitis subjects (n=15) and from controls (n=5) with clinically healthy gingiva and no periodontitis. Purified MRP-8 was sequenced by Edmann degradation and the phenylthiohydantoin (PTH) amino acid yield determined (by comparison of peak area with external PTH amino acid standards). This value was subsequently used to calculate the relative amount of protein in the peak eluting with a retention time of 26.0 min (MRP-8) in individual GCF chromatograms.
RESULTS:
Higher levels of MRP-8 were detected in inflammatory sites: periodontitis 457.0 (281.0) ng; gingivitis 413.5 (394.5) ng compared with periodontally healthy sites in diseased subjects 14.6 (14.3) ng and in controls 18.6 (18.5) ng, p=0.003. There was at least 20-fold more MRP-8 in the inflammatory compared with the healthy sites studied.
CONCLUSIONS:
The preliminary data indicate that MRP-8 is present in GCF, with significantly greater amounts present at diseased than healthy sites. A systematic study of the relationship of this protein to periodontal disease could prove useful in further clarifying whether MRP-8 could be a reliable GCF biomarker of gingivitis and periodontitis.
Resumo:
Directed Michaelis–Arbuzov reactions of support-bound internucleotide O-benzyl- or O-methyl-phosphite triesters with meta-phenylazobenzylamine or alkane-/glycol-linked a,x-diamines were effected in the presence of iodine. The corresponding tritylated phosphoramidate-linked 11-mers were fully deprotected and released from the support under standard conditions and the fast- and slow-diastereoisomers of both the E- and the Z-meta-phenylazobenzyl-appended oligomers were readily resolved by RP-HPLC. The primary amine-functionalised oligonucleotides were either purified, detritylated and then finally treated with Nhydroxysuccinimidyl carboxylic acid ester derivatives of photoswitchable moieties (Route A) or first derivatised and then subsequently purified and detritylated (Route B). This latter route enabled resolution of fast- and slow-isomers of the trityl-on oligomers bearing novel photoswitchable azopyridine or 9-alkoxyanthracene moieties using RP-HPLC, following which the pure diastereoisomers were detritylated and characterised by MALDI-MS.
Resumo:
The presence and biological significance of circulating glycated insulin has been evaluated by high-pressure liquid chromatography (HPLC), electrospray ionization mass spectrometry (ESI-MS), radioimmunoassay (RIA), receptor binding, and hyperinsulinemic-euglycemic clamp techniques. ESI-MS analysis of an HPLC-purified plasma pool from four male type 2 diabetic subjects (HbA(1e) 8.1 +/- 0.2%, plasma glucose 8.7 +/- 1.3 mmol/l [means +/- SE]) revealed two major insulin-like peaks with retention times of 14-16 min. After spectral averaging, the peak with retention time of 14.32 min exhibited a prominent triply charged (M+3H)(3+) species at 1,991.1 m/z, representing monoglycated insulin with an intact M-r of 5,970.3 Da. The second peak (retention time 15.70 min) corresponded to native insulin (M-r 5,807.6 Da), with the difference between the two peptides (162.7 Da) representing a single glucitol adduct (theoretical 164 Da). Measurement of glycated insulin in plasma of type 2 diabetic subjects by specific RIA gave circulating levels of 10.1 +/- 2.3 pmol/l, corresponding to -9% total insulin. Biological activity of pure synthetic monoglycated insulin (insulin B-chain Phe(1)-glucitol adduct) was evaluated in seven overnight-fasted healthy nonobese male volunteers using two-step euglycemic-hyperinsulinemic clamps (2 h at 16.6 mug (.) kg(-1) (.) min(-1), followed by 2 h at 83.0 mug (.) kg(-1) (.) min(-1); corresponding to 0.4 and 2.0 mU (.) kg(-1) (.) min(-1)). At the lower dose, the exogenons glucose infusion rates required to maintain euglycemia during steady state were significantly lower with glycated insulin (P
Resumo:
A sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the detection of several synthetic glucocorticoids in kidney, muscle and hair samples of cattle after a single intramuscular injection is described. After a dichloromethane wash of the hair samples, analytes were released from the hair matrix by enzymatic digestion. Muscle samples were also digested enzymatically using proteinase, while kidney samples were deconjugated by Helix pomatia juice. These preliminary steps were followed by a methanol extraction and a solid phase extraction (SPE) clean up step for all matrices. Chromatographic separation was achieved on a Hypersil Hypercarb column and MS/MS data were obtained in the multiple reaction monitoring mode using negative electrospray ionization. The developed protocols were evaluated by assessing residue concentrations in muscle, kidney and hair samples of thirteen calves, treated with a particular intramuscular injection of glucocorticoid. The lowest residue levels were found in muscle samples (approximately 5% of the residue levels in kidney), while high residue levels were obtained in hair samples. Hair is an interesting matrix since the sampling is non-invasive and the drugs may stay incorporated for a longer period of time. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Chemical modification of proteins by reactive oxygen species affects protein structure, function and turnover during aging and chronic disease. Some of this damage is direct, for example by oxidation of amino acids in protein by peroxide or other reactive oxygen species, but autoxidation of ambient carbohydrates and lipids amplifies both the oxidative and chemical damage to protein and leads to formation of advanced glycoxidation and lipoxidation end-products (AGE/ALEs). In previous work, we have observed the oxidation of methionine during glycoxidation and lipoxidation reactions, and in the present work we set out to determine if methionine sulfoxide (MetSO) in protein was a more sensitive indicator of glycoxidative and lipoxidative damage than AGE/ALEs. We also investigated the sites of methionine oxidation in a model protein, ribonuclease A (RNase), in order to determine whether analysis of the site specificity of methionine oxidation in proteins could be used to indicate the source of the oxidative damage, i.e. carbohydrate or lipid. We describe here the development of an LC/MS/MS for quantification of methionine oxidation at specific sites in RNase during glycoxidation or lipoxidation by glucose or arachidonate, respectively. Glycoxidized and lipoxidized RNase were analyzed by tryptic digestion, followed by reversed phase HPLC and mass spectrometric analysis to quantify methionine and methionine sulfoxide containing peptides. We observed that: (1) compared to AGE/ALEs, methionine sulfoxide was a more sensitive biomarker of glycoxidative or lipoxidative damage to proteins; (2) regardless of oxidizable substrate, the relative rate of oxidation of methionine residues in RNase was Met(29) > Met(30) > Met(13), with Met(79) being resistant to oxidation; and (3) arachidonate produced a significantly greater yield of MetSO, compared to glucose. The methods developed here should be useful for assessing a protein's overall exposure to oxidative stress from a variety of sources in vivo. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
An HPLC method has been developed and validated for the rapid determination of mercaptopurine and four of its metabolites; thioguanine, thiouric acid, thioxanthine and methylmercaptopurine in plasma and red blood cells. The method involves a simple treatment procedure based on deproteinisation by perchloric acid followed by acid hydrolysis and heating for 45 min at 100 degrees C. The developed method was linear over the concentration range studied with a correlation coefficient >0.994 for all compounds in both plasma and erythrocytes. The lower limits of quantification were 13, 14, 3, 2, 95 pmol/8 x 101 RBCs and 2, 5, 2, 3, 20 ng/ml plasma for thioguanine, thiouric acid, mercaptopurine, thioxanthine and methylmercaptopurine, respectively. The method described is selective and sensitive enough to analyse the different metabolites in a single run under isocratic conditions. Furthermore, it has been shown to be applicable for monitoring these metabolites in paediatric patients due to the low volume requirement (200 mu l of plasma or erythrocytes) and has been successfully applied for investigating population pharmacokinetics, pharmacogenetics and non-adherence to therapy in these patients. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Presentación. Angelina Muñiz: hacia la construcción de una identidad más allá de las líneas fronterizas
Resumo:
A selective and sensitive liquid chromatography (LC)-atmospheric pressure chemical ionisation (APCI)-mass spectroscopic (MS) assay of canrenone has been developed and validated employing Dried Blood Spots (DBS) as the sample collection medium. DBS samples were prepared by applying 30 mu l of spiked whole blood onto Guthrie cards. A 6 mm disc was punched from the each DBS and extracted with 2 ml of methanolic solution of 17 alpha-methyltestosterone (Internal Standard). The methanolic extract was evaporated to dryness and reconstituted in acetonitrile:water (1:9, v/v). The reconstituted solution was further subjected to solid phase extraction using HLB cartridges. Chromatographic separation was achieved using Waters Sunfire C18 reversed-phase column using isocratic elution, followed by a high organic wash to clear late eluting/highly retained components. The mobile phase consisted of methanol:water (60:40, v/v) pumped at a flow rate of 0.3 ml/min. LC-APCI-MS detection was performed in the selected-ion monitoring (SIM) mode using target ions at m/z 341.1 and 303.3 for canrenone and internal standard respectively. The selectivity of the method was established by analysing DBS samples from 6 different sources (individuals). The calibration curve for canrenone was found to be linear over 25-1000 ng/ml (r >0.994). Accuracy (% RE) and precision (% CV) values for within and between day were
Resumo:
Peptidomics is a powerful set of tools for the identification, structural elucidation and discovery of novel regulatory peptides and for monitoring the degradation pathways of structurally and catalytically important proteins. Amphibian skin secretions, arising from specialized granular glands, often contain complex peptidomes containing many components of entirely novel structure and unique site-substituted analogues of known peptide families. Following the discovery that the granular gland transcriptome is present in such secretions in a PCR-amenable form, we designed a strategy for peptide structural characterization involving the integration of ‘shotgun’ cloning of cDNAs encoding peptide precursors, deduction of putative bioactive peptide structures, and confirmation of these structures using tandem MS/MS sequencing. Here, we illustrate this strategy by means of elucidation of the primary structures of nigrocin-2 homologues from the defensive skin secretions of four species of Chinese Odorrana frogs, O. schmackeri, O. livida, O. hejiangensis and O. versabilis. Synthetic replicates of the peptides were found to possess antimicrobial activity. Nigrocin-2 peptides occur widely in the skin secretions of Asian ranid frogs and in those of the Odorrana group, and are particularly well-represented and of diverse structure in some species. Integration of the molecular analytical technologies described provides a means for rapid structural characterization of novel peptides from complex natural libraries in the absence of systematic online database information.
Resumo:
Skin kininogens from bombinid toads encode an array of bradykinin-related peptides and one such kininogen from Bombina maxima also encodes the potent bradykinin B2-receptor antagonist, kinestatin. In order to determine if the skin secretion of the closely-related toad, Bombina orientalis, contained a bradykinin inhibitory peptide related to kinestatin, we screened reverse phase HPLC fractions of defensive skin secretion using a rat tail artery smooth muscle preparation. A fraction was located that inhibited bradykinin-induced relaxation of the preparation and this contained a peptide of 3198.5 Da as determined by MALDI-TOF MS. Automated Edman degradation of this peptide established the identity of a 28-mer as: DMYEIKGFKSAHGRPRVCPPGEQCPIWV, with a disulfide-bridge between Cys18 and Cys24 and an amidated C-terminal Val residue. Peptide DV-28 was found to correspond to residues 133–160 of skin pre-kininogen-2 of B. orientalis that also encodes two copies of (Thr6)-bradykinin. The C-terminal residue, Gly-161, of the precursor open-reading frame, acts as the C-terminal amide donor of mature DV-28. DV-28 amide thus represents a new class of bradykinin inhibitor peptide from amphibian skin secretion.
Resumo:
Amphibian skin secretions are rich sources of cationic amphipathic peptides which often possess potent and broad-spectrum antimicrobial activity. However, the venoms of other animals such as hymenopteran insects, also contain peptides with these characteristics and the literature is unclear as to their antimicrobial potential. Here we subjected the venom of the European hornet, Vespa crabro, to reverse phase HPLC fractionation followed by screening of aliquots of individual fractions in bacterial zonal inhibition assays. Two major peptides possessing activity in these assays were further purified by HPLC and subjected to MALDI-TOF MS analysis and MS/MS fragmentation using an ESI mass spectrometer. The peptides were identified as mastoparan C (LNLKALLAVAKKILamide) and crabrolin (FLPLILRKIVTALamide). Replicates of both peptides were synthesised by solid-phase methodology and mean inhibitory concentrations (MICs) established against Staphylococcus aureus and Escherichia coli. Mastoparan C was found to be a potent antimicrobial with MIC values of 2 µM and 4 µM against S. aureus and E. coli, respectively. Crabrolin was found to be less potent with MIC values of > 160 µM and 40 µM for S. aureus and E. coli. Hornet venom thus contains a potent antimicrobial peptide that has been unambiguously identified as mastoparan C, a peptide that is known to affect profound histamine release from mast cells and to generally activate membrane G protein-linked receptors. It is thus highly probable that its antimicrobial effects, like those previously documented, are a result of a generalized membrane interactive and disruptive function — perhaps reflective of the authentic role of amphibian skin antimicrobials.
Resumo:
Background: Epidermal growth factor receptor gene (EGFR) variants may be useful markers for identifying responders to gefitinib and erlotinib, small-molecule tyrosine kinase inhibitors of EGFR; therefore, sensitive and cost-effective assays are needed to detect EGFR variants in routine clinical samples. We have developed a partially denaturing HPLC (pDHPLC) assay that is superior to direct sequencing with respect to detection limits, costs, and time requirements.