878 resultados para Genetic Algorithm optimization


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The parameter setting of a differential evolution algorithm must meet several requirements: efficiency, effectiveness, and reliability. Problems vary. The solution of a particular problem can be represented in different ways. An algorithm most efficient in dealing with a particular representation may be less efficient in dealing with other representations. The development of differential evolution-based methods contributes substantially to research on evolutionary computing and global optimization in general. The objective of this study is to investigatethe differential evolution algorithm, the intelligent adjustment of its controlparameters, and its application. In the thesis, the differential evolution algorithm is first examined using different parameter settings and test functions. Fuzzy control is then employed to make control parameters adaptive based on an optimization process and expert knowledge. The developed algorithms are applied to training radial basis function networks for function approximation with possible variables including centers, widths, and weights of basis functions and both having control parameters kept fixed and adjusted by fuzzy controller. After the influence of control variables on the performance of the differential evolution algorithm was explored, an adaptive version of the differential evolution algorithm was developed and the differential evolution-based radial basis function network training approaches were proposed. Experimental results showed that the performance of the differential evolution algorithm is sensitive to parameter setting, and the best setting was found to be problem dependent. The fuzzy adaptive differential evolution algorithm releases the user load of parameter setting and performs better than those using all fixedparameters. Differential evolution-based approaches are effective for training Gaussian radial basis function networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results: Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions: Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transmission of drug-resistant pathogens presents an almost-universal challenge for fighting infectious diseases. Transmitted drug resistance mutations (TDRM) can persist in the absence of drugs for considerable time. It is generally believed that differential TDRM-persistence is caused, at least partially, by variations in TDRM-fitness-costs. However, in vivo epidemiological evidence for the impact of fitness costs on TDRM-persistence is rare. Here, we studied the persistence of TDRM in HIV-1 using longitudinally-sampled nucleotide sequences from the Swiss-HIV-Cohort-Study (SHCS). All treatment-naïve individuals with TDRM at baseline were included. Persistence of TDRM was quantified via reversion rates (RR) determined with interval-censored survival models. Fitness costs of TDRM were estimated in the genetic background in which they occurred using a previously published and validated machine-learning algorithm (based on in vitro replicative capacities) and were included in the survival models as explanatory variables. In 857 sequential samples from 168 treatment-naïve patients, 17 TDRM were analyzed. RR varied substantially and ranged from 174.0/100-person-years;CI=[51.4, 588.8] (for 184V) to 2.7/100-person-years;[0.7, 10.9] (for 215D). RR increased significantly with fitness cost (increase by 1.6[1.3,2.0] per standard deviation of fitness costs). When subdividing fitness costs into the average fitness cost of a given mutation and the deviation from the average fitness cost of a mutation in a given genetic background, we found that both components were significantly associated with reversion-rates. Our results show that the substantial variations of TDRM persistence in the absence of drugs are associated with fitness-cost differences both among mutations and among different genetic backgrounds for the same mutation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the cost constraints of the European health-care systems, criteria are needed to decide which genetic services to fund from the public budgets, if not all can be covered. To ensure that high-priority services are available equitably within and across the European countries, a shared set of prioritization criteria would be desirable. A decision process following the accountability for reasonableness framework was undertaken, including a multidisciplinary EuroGentest/PPPC-ESHG workshop to develop shared prioritization criteria. Resources are currently too limited to fund all the beneficial genetic testing services available in the next decade. Ethically and economically reflected prioritization criteria are needed. Prioritization should be based on considerations of medical benefit, health need and costs. Medical benefit includes evidence of benefit in terms of clinical benefit, benefit of information for important life decisions, benefit for other people apart from the person tested and the patient-specific likelihood of being affected by the condition tested for. It may be subject to a finite time window. Health need includes the severity of the condition tested for and its progression at the time of testing. Further discussion and better evidence is needed before clearly defined recommendations can be made or a prioritization algorithm proposed. To our knowledge, this is the first time a clinical society has initiated a decision process about health-care prioritization on a European level, following the principles of accountability for reasonableness. We provide points to consider to stimulate this debate across the EU and to serve as a reference for improving patient management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this study were to evaluate the performance of cultivars, to quantify the variability and to estimate the genetic distances of 66 wine grape accessions in the Grape Germplasm Bank of the EMBRAPA Semi-Arid, in Juazeiro, BA, Brazil, through the characterization of discrete and continuous phenotypic variables. Multivariate statistics, such as, principal components, Tocher's optimization procedure, and the graphic of the distance, were efficient in grouping more similar genotypes, according to their phenotypic characteristics. There was no agreement in the formation of groups between continuous and discrete morpho-agronomic traits, when Tocher's optimization procedure was used. Discrete variables allowed the separation of Vitis vinifera and hybrids in different groups. Significant positive correlations were observed between weight, length and width of bunches, and a negative correlation between titratable acidity and TSS/TTA. The major part (84.12%) of the total variation present in the original data was explained by the four principal components. The results revealed little variability between wine grape accessions in the Grape Germplasm Bank of Embrapa Semi-Arid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It was evaluated the genetic divergence in peach genotypes for brown rot reaction. It was evaluated 26 and 29 peach genotypes in the 2009/2010 and 2010/2011 production cycle, respectively. The experiment was carried out at the Laboratório de Fitossanidade, da UTFPR - Campus Dois Vizinhos. The experimental design was entirely randomized, considering each peach genotype a treatment, and it was use three replication of nine fruits. The treatment control use three replication of three peach. The fruit epidermis were inoculated individually with 0.15 mL of M. fructicola conidial suspension (1.0 x 10(5) spores mL-1). In the control treatment was sprayed with 0.15 mL of distilled water. The fruits were examined 72 and 120 hours after inoculation, and the incidence and severity disease were evaluated. These results allowed realized study for genetic divergence, used as dissimilarity measure the Generalized Mahalanobis distance. Cluster analysis using Tocher´s optimization method and distances in the plan were applied. There was smallest genetic divergence among peach trees evaluated for brown rot, what can difficult to obtain resistance in the genotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Vitamin D deficiency is prevalent in HIV-infected individuals and vitamin D supplementation is proposed according to standard care. This study aimed at characterizing the kinetics of 25(OH)D in a cohort of HIV-infected individuals of European ancestry to better define the influence of genetic and non-genetic factors on 25(OH)D levels. These data were used for the optimization of vitamin D supplementation in order to reach therapeutic targets. METHODS: 1,397 25(OH)D plasma levels and relevant clinical information were collected in 664 participants during medical routine follow-up visits. They were genotyped for 7 SNPs in 4 genes known to be associated with 25(OH)D levels. 25(OH)D concentrations were analysed using a population pharmacokinetic approach. The percentage of individuals with 25(OH)D concentrations within the recommended range of 20-40 ng/ml during 12 months of follow-up and several dosage regimens were evaluated by simulation. RESULTS: A one-compartment model with linear absorption and elimination was used to describe 25(OH)D pharmacokinetics, while integrating endogenous baseline plasma concentrations. Covariate analyses confirmed the effect of seasonality, body mass index, smoking habits, the analytical method, darunavir/ritonavir and the genetic variant in GC (rs2282679) on 25(OH)D concentrations. 11% of the inter-individual variability in 25(OH)D levels was explained by seasonality and other non-genetic covariates, and 1% by genetics. The optimal supplementation for severe vitamin D deficient patients was 300,000 IU two times per year. CONCLUSIONS: This analysis allowed identifying factors associated with 25(OH)D plasma levels in HIV-infected individuals. Improvement of dosage regimen and timing of vitamin D supplementation is proposed based on those results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drug combinations can improve angiostatic cancer treatment efficacy and enable the reduction of side effects and drug resistance. Combining drugs is non-trivial due to the high number of possibilities. We applied a feedback system control (FSC) technique with a population-based stochastic search algorithm to navigate through the large parametric space of nine angiostatic drugs at four concentrations to identify optimal low-dose drug combinations. This implied an iterative approach of in vitro testing of endothelial cell viability and algorithm-based analysis. The optimal synergistic drug combination, containing erlotinib, BEZ-235 and RAPTA-C, was reached in a small number of iterations. Final drug combinations showed enhanced endothelial cell specificity and synergistically inhibited proliferation (p < 0.001), but not migration of endothelial cells, and forced enhanced numbers of endothelial cells to undergo apoptosis (p < 0.01). Successful translation of this drug combination was achieved in two preclinical in vivo tumor models. Tumor growth was inhibited synergistically and significantly (p < 0.05 and p < 0.01, respectively) using reduced drug doses as compared to optimal single-drug concentrations. At the applied conditions, single-drug monotherapies had no or negligible activity in these models. We suggest that FSC can be used for rapid identification of effective, reduced dose, multi-drug combinations for the treatment of cancer and other diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this research was to study the genetic diversity and genetic relatedness of 60 genotypes of grapevines derived from the Germplasm Bank of Embrapa Semiárido, Juazeiro, BA, Brazil. Seven previously characterized microsatellite markers were used: VVS2, VVMD5, VVMD7, VVMD27, VVMD3, ssrVrZAG79 and ssrVrZAG62. The expected heterozygosity (He) and polymorphic information content (PIC) were calculated, and the cluster analysis were processed to generate a dendrogram using the algorithm UPGMA. The He ranged from 81.8% to 88.1%, with a mean of 84.8%. The loci VrZAG79 and VVMD7 were the most informative, with a PIC of 87 and 86%, respectively, while VrZAG62 was the least informative, with a PIC value of 80%. Cluster analysis by UPGMA method allowed separation of the genotypes according to their genealogy and identification of possible parentage for the cultivars 'Dominga', 'Isaura', 'CG 26916', 'CG28467' and 'Roni Redi'.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although fetal anatomy can be adequately viewed in new multi-slice MR images, many critical limitations remain for quantitative data analysis. To this end, several research groups have recently developed advanced image processing methods, often denoted by super-resolution (SR) techniques, to reconstruct from a set of clinical low-resolution (LR) images, a high-resolution (HR) motion-free volume. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has been quite attracted by Total Variation energies because of their ability in edge preserving but only standard explicit steepest gradient techniques have been applied for optimization. In a preliminary work, it has been shown that novel fast convex optimization techniques could be successfully applied to design an efficient Total Variation optimization algorithm for the super-resolution problem. In this work, two major contributions are presented. Firstly, we will briefly review the Bayesian and Variational dual formulations of current state-of-the-art methods dedicated to fetal MRI reconstruction. Secondly, we present an extensive quantitative evaluation of our SR algorithm previously introduced on both simulated fetal and real clinical data (with both normal and pathological subjects). Specifically, we study the robustness of regularization terms in front of residual registration errors and we also present a novel strategy for automatically select the weight of the regularization as regards the data fidelity term. Our results show that our TV implementation is highly robust in front of motion artifacts and that it offers the best trade-off between speed and accuracy for fetal MRI recovery as in comparison with state-of-the art methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy [1], Total Variation (TV)based energies [2,3] and more recently non-local means [4]. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm for fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n(2)) and O(1/root epsilon), while existing techniques are in O(1/n) and O(1/epsilon). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The threats caused by global warming motivate different stake holders to deal with and control them. This Master's thesis focuses on analyzing carbon trade permits in optimization framework. The studied model determines optimal emission and uncertainty levels which minimize the total cost. Research questions are formulated and answered by using different optimization tools. The model is developed and calibrated by using available consistent data in the area of carbon emission technology and control. Data and some basic modeling assumptions were extracted from reports and existing literatures. The data collected from the countries in the Kyoto treaty are used to estimate the cost functions. Theory and methods of constrained optimization are briefly presented. A two-level optimization problem (individual and between the parties) is analyzed by using several optimization methods. The combined cost optimization between the parties leads into multivariate model and calls for advanced techniques. Lagrangian, Sequential Quadratic Programming and Differential Evolution (DE) algorithm are referred to. The role of inherent measurement uncertainty in the monitoring of emissions is discussed. We briefly investigate an approach where emission uncertainty would be described in stochastic framework. MATLAB software has been used to provide visualizations including the relationship between decision variables and objective function values. Interpretations in the context of carbon trading were briefly presented. Suggestions for future work are given in stochastic modeling, emission trading and coupled analysis of energy prices and carbon permits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current technology trends in medical device industry calls for fabrication of massive arrays of microfeatures such as microchannels on to nonsilicon material substrates with high accuracy, superior precision, and high throughput. Microchannels are typical features used in medical devices for medication dosing into the human body, analyzing DNA arrays or cell cultures. In this study, the capabilities of machining systems for micro-end milling have been evaluated by conducting experiments, regression modeling, and response surface methodology. In machining experiments by using micromilling, arrays of microchannels are fabricated on aluminium and titanium plates, and the feature size and accuracy (width and depth) and surface roughness are measured. Multicriteria decision making for material and process parameters selection for desired accuracy is investigated by using particle swarm optimization (PSO) method, which is an evolutionary computation method inspired by genetic algorithms (GA). Appropriate regression models are utilized within the PSO and optimum selection of micromilling parameters; microchannel feature accuracy and surface roughness are performed. An analysis for optimal micromachining parameters in decision variable space is also conducted. This study demonstrates the advantages of evolutionary computing algorithms in micromilling decision making and process optimization investigations and can be expanded to other applications