987 resultados para Generalized Christoffel equation
Resumo:
Aim: The aim of this paper is to identify best practice relating to the effective management of materials in an urban, confined construction site, using structural equation modelling.
Methodology: A literature review, case study analysis and questionnaire survey are employed, with the results scrutinised using confirmatory factor analysis in the form of structural equation modelling.
Results: The following are the leading strategies in the management of materials in a confined urban site environment; (1) Consult and review the project programme, (2) Effective communication and delivery, (3) Implement site safety management plans, and (4) Proactive spatial monitoring and control.
Implication for Practice: With the relentless expansion of urban centres and the increasing high cost of materials, any potential savings made on-site would translate into significant monetary concessions on completion of a development.
Originality/Value: As on-site project management professionals successfully identify and implement the various strategies in the management of plant and materials on a confined urban site, successful resource management in this restrictive environment is attainable.
Innovative Aspect of Paper: An empirical study of three different construction sites in three different countries (Ireland, England and USA) together with a questionnaire survey from the industry, investigating the managerial strategies in the management of plant and material in confined urban site environments
Resumo:
In this paper we describe the design of a parallel solution of the inhomogeneous Schrodinger equation, which arises in the construction of continuum orbitals in the R-matrix theory of atomic continuum processes. A prototype system is described which has been programmed in occam2 and implemented on a bi-directional pipeline of transputers. Some timing results for the prototype system are presented, and the development of a full production system is discussed.
Resumo:
We consider transmit antenna selection with receive generalized selection combining (TAS/GSC) for cognitive decodeand-forward (DF) relaying in Nakagami-m fading channels. In an effort to assess the performance, the probability density function and the cumulative distribution function of the endto-end SNR are derived using the moment generating function, from which new exact closed-form expressions for the outage probability and the symbol error rate are derived. We then derive a new closed-form expression for the ergodic capacity. More importantly, by deriving the asymptotic expressions for the outage probability and the symbol error rate, as well as the high SNR approximations of the ergodic capacity, we establish new design insights under the two distinct constraint scenarios: 1) proportional interference power constraint, and 2) fixed interference power constraint. Several pivotal conclusions are reached. For the first scenario, the full diversity order of the
outage probability and the symbol error rate is achieved, and the high SNR slope of the ergodic capacity is 1/2. For the second scenario, the diversity order of the outage probability and the symbol error rate is zero with error floors, and the high SNR slope of the ergodic capacity is zero with capacity ceiling.
Resumo:
Credal networks generalize Bayesian networks by relaxing the requirement of precision of probabilities. Credal networks are considerably more expressive than Bayesian networks, but this makes belief updating NP-hard even on polytrees. We develop a new efficient algorithm for approximate belief updating in credal networks. The algorithm is based on an important representation result we prove for general credal networks: that any credal network can be equivalently reformulated as a credal network with binary variables; moreover, the transformation, which is considerably more complex than in the Bayesian case, can be implemented in polynomial time. The equivalent binary credal network is then updated by L2U, a loopy approximate algorithm for binary credal networks. Overall, we generalize L2U to non-binary credal networks, obtaining a scalable algorithm for the general case, which is approximate only because of its loopy nature. The accuracy of the inferences with respect to other state-of-the-art algorithms is evaluated by extensive numerical tests.
Resumo:
Credal nets generalize Bayesian nets by relaxing the requirement of precision of probabilities. Credal nets are considerably more expressive than Bayesian nets, but this makes belief updating NP-hard even on polytrees. We develop a new efficient algorithm for approximate belief updating in credal nets. The algorithm is based on an important representation result we prove for general credal nets: that any credal net can be equivalently reformulated as a credal net with binary variables; moreover, the transformation, which is considerably more complex than in the Bayesian case, can be implemented in polynomial time. The equivalent binary credal net is updated by L2U, a loopy approximate algorithm for binary credal nets. Thus, we generalize L2U to non-binary credal nets, obtaining an accurate and scalable algorithm for the general case, which is approximate only because of its loopy nature. The accuracy of the inferences is evaluated by empirical tests.
Resumo:
We investigate the dynamics of localized solutions of the relativistic cold-fluid plasma model in the small but finite amplitude limit, for slightly overcritical plasma density. Adopting a multiple scale analysis, we derive a perturbed nonlinear Schrodinger equation that describes the evolution of the envelope of circularly polarized electromagnetic field. Retaining terms up to fifth order in the small perturbation parameter, we derive a self-consistent framework for the description of the plasma response in the presence of localized electromagnetic field. The formalism is applied to standing electromagnetic soliton interactions and the results are validated by simulations of the full cold-fluid model. To lowest order, a cubic nonlinear Schrodinger equation with a focusing nonlinearity is recovered. Classical quasiparticle theory is used to obtain analytical estimates for the collision time and minimum distance of approach between solitons. For larger soliton amplitudes the inclusion of the fifth-order terms is essential for a qualitatively correct description of soliton interactions. The defocusing quintic nonlinearity leads to inelastic soliton collisions, while bound states of solitons do not persist under perturbations in the initial phase or amplitude
Resumo:
Electrostatic dust-acoustic shock waves are investigated in a viscous, complex plasma consisting of dust particles, electrons, and ions. The system is modelled using the generalized hydrodynamic equations, with strong coupling between the dust particles being accounted for by employing the effective electrostatic temperature approach. Using a reductive perturbation method, it is demonstrated that this model predicts the existence of weakly nonlinear dust-acoustic shock waves, arising as solutions to Burgers's equation, in which the nonlinear forces are balanced by dissipative forces, in this case, associated with viscosity. The evolution and stability of dust-acoustic shocks is investigated via a series of numerical simulations, which confirms our analytical predictions on the shock characteristics.
Resumo:
Differential equations are often directly solvable by analytical means only in their one dimensional version. Partial differential equations are generally not solvable by analytical means in two and three dimensions, with the exception of few special cases. In all other cases, numerical approximation methods need to be utilized. One of the most popular methods is the finite element method. The main areas of focus, here, are the Poisson heat equation and the plate bending equation. The purpose of this paper is to provide a quick walkthrough of the various approaches that the authors followed in pursuit of creating optimal solvers, accelerated with the use of graphical processing units, and comparing them in terms of accuracy and time efficiency with existing or self-made non-accelerated solvers.
Outperformance in exchange-traded fund pricing deviations: Generalized control of data snooping bias
Resumo:
An investigation into exchange-traded fund (ETF) outperforrnance during the period 2008-2012 is undertaken utilizing a data set of 288 U.S. traded securities. ETFs are tested for net asset value (NAV) premium, underlying index and market benchmark outperformance, with Sharpe, Treynor, and Sortino ratios employed as risk-adjusted performance measures. A key contribution is the application of an innovative generalized stepdown procedure in controlling for data snooping bias. We find that a large proportion of optimized replication and debt asset class ETFs display risk-adjusted premiums with energy and precious metals focused funds outperforming the S&P 500 market benchmark.
Resumo:
Multicarrier Index Keying (MCIK) is a recently developed technique that modulates subcarriers but also indices of the subcarriers. In this paper a novel low-complexity detection scheme of subcarrier indices is proposed for an MCIK system and addresses a substantial reduction in complexity over the optimalmaximum likelihood (ML) detection. For the performance evaluation, a closed-form expression for the pairwise error probability (PEP) of an active subcarrier index, and a tight approximation of the average PEP of multiple subcarrier indices are derived in closed-form. The theoretical outcomes are validated usingsimulations, at a difference of less than 0.1dB. Compared to the optimal ML, the proposed detection achieves a substantial reduction in complexity with small loss in error performance (<= 0.6dB).
Resumo:
In this paper we study the well-posedness for a fourth-order parabolic equation modeling epitaxial thin film growth. Using Kato's Method [1], [2] and [3] we establish existence, uniqueness and regularity of the solution to the model, in suitable spaces, namelyC0([0,T];Lp(Ω)) where with 1<α<2, n∈N and n≥2. We also show the global existence solution to the nonlinear parabolic equations for small initial data. Our main tools are Lp–Lq-estimates, regularization property of the linear part of e−tΔ2 and successive approximations. Furthermore, we illustrate the qualitative behavior of the approximate solution through some numerical simulations. The approximate solutions exhibit some favorable absorption properties of the model, which highlight the stabilizing effect of our specific formulation of the source term associated with the upward hopping of atoms. Consequently, the solutions describe well some experimentally observed phenomena, which characterize the growth of thin film such as grain coarsening, island formation and thickness growth.